scispace - formally typeset
Search or ask a question
Topic

Fluorescence

About: Fluorescence is a research topic. Over the lifetime, 27004 publications have been published within this topic receiving 695713 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new family of highly fluorescent indicators has been synthesized for biochemical studies of the physiological role of cytosolic free Ca2+ using an 8-coordinate tetracarboxylate chelating site with stilbene chromophores that offer up to 30-fold brighter fluorescence.

21,582 citations

BookDOI
25 Apr 2012
TL;DR: In this article, the effects of intermolecular photophysical processes on fluorescence emission are discussed and an analysis of the effect of polarity of fluorescence emissions is presented.
Abstract: Preface. Prologue. Introduction. Absorption of UV--visible light. Characteristics of Fluorescence Emission. Effects of Intermolecular Photophysical Processes on Fluorescence Emission. Fluorescence polarization: Emission Ansotropy. Principles of steady--state and time--resolved fluorometric techniques. Effect of polarity of fluorescence emission. Polarity probes. Microviscosity, fluidity, molecular mobility. Estimation by means of fluorescent probes. Resonance energy transfer and its applications. Fluorescent molecular sensors of ions and molecules. Advanced techniques in fluorescence spectroscopy. Epilogue. Index.

4,261 citations

Journal ArticleDOI
TL;DR: By varying the distance between molecule and particle, this work shows the first experimental measurement demonstrating the continuous transition from fluorescence enhancement to fluorescence quenching.
Abstract: We present an experimental and theoretical study of the fluorescence rate of a single molecule as a function of its distance to a laser-irradiated gold nanoparticle. The local field enhancement leads to an increased excitation rate whereas nonradiative energy transfer to the particle leads to a decrease of the quantum yield (quenching). Because of these competing effects, previous experiments showed either fluorescence enhancement or fluorescence quenching. By varying the distance between molecule and particle we show the first experimental measurement demonstrating the continuous transition from fluorescence enhancement to fluorescence quenching. This transition cannot be explained by treating the particle as a polarizable sphere in the dipole approximation.

2,854 citations

Journal ArticleDOI
TL;DR: It is shown that the modulation fluorometer, in combination with the application of saturating light pulses, provides essential information beyond that obtained with conventional chlorophyll fluorometers.
Abstract: A newly developed fluorescence measuring system is employed for the recording of chlorophyll fluorescence induction kinetics (Kautsky-effect) and for the continuous determination of the photochemical and non-photochemical components of fluorescence quenching. The measuring system, which is based on a pulse modulation principle, selectively monitors the fluorescence yield of a weak measuring beam and is not affected even by extremely high intensities of actinic light. By repetitive application of short light pulses of saturating intensity, the fluorescence yield at complete suppression of photochemical quenching is repetitively recorded, allowing the determination of continuous plots of photochemical quenching and non-photochemical quenching. Such plots are compared with the time courses of variable fluorescence at different intensities of actinic illumination. The differences between the observed kinetics are discussed. It is shown that the modulation fluorometer, in combination with the application of saturating light pulses, provides essential information beyond that obtained with conventional chlorophyll fluorometers.

2,671 citations

Journal ArticleDOI
14 Apr 2006-Science
TL;DR: The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy.
Abstract: Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.

2,632 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
89% related
Nanoparticle
85.9K papers, 2.6M citations
89% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
DNA
107.1K papers, 4.7M citations
85% related
Carbon nanotube
109K papers, 3.6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236,942
202213,322
20211,412
20201,358
20191,665
20181,711