scispace - formally typeset
Search or ask a question
Topic

Flux pinning

About: Flux pinning is a research topic. Over the lifetime, 7281 publications have been published within this topic receiving 129790 citations. The topic is also known as: Flux creep.


Papers
More filters
Journal ArticleDOI
TL;DR: The effects of thermal fluctuations, quenched disorder, and anisotropy on the phases and phase transitions in type-II superconductors are examined, focusing on linear and nonlinear transport properties.
Abstract: The effects of thermal fluctuations, quenched disorder, and anisotropy on the phases and phase transitions in type-II superconductors are examined, focusing on linear and nonlinear transport properties. In zero magnetic field there are two crossovers upon approaching ${\mathit{T}}_{\mathit{c}}$, first the ``Ginzburg'' crossover from mean-field behavior to the universality class of an uncharged superfluid, and then, much closer to ${\mathit{T}}_{\mathit{c}}$ for strongly type-II systems, a crossover to the universality class of a charged superfluid. The primary focus of this paper is on the behavior in the presence of a penetrating magnetic field. In a clean system the vortex-lattice phase can melt due to thermal fluctuations; we estimate the phase boundary in a variety of regimes. Pinning of vortices due to impurities or other defects destroys the long-range correlations of the vortex lattice, probably replacing it with a new vortex-glass phase that has spin-glasslike off-diagonal long-range order and is truly superconducting, in contrast to conventional theories of ``flux creep.'' The properties of this vortex-glass phase are examined, as well as the critical behavior near the transition from the vortex-glass to the vortex-fluid phase. The crossover from lattice to vortex-glass behavior for weak pinning is also examined. Linear and nonlinear conductivity measurements and other experiments on the high-${\mathit{T}}_{\mathit{c}}$ superconductors Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O are discussed in light of the results. The latter is found to exhibit strongly two-dimensional behavior over large portions of its phase diagram.

1,523 citations

Journal ArticleDOI
Yosef Yeshurun1, A. P. Malozemoff1
TL;DR: Strong, anisotropic magnetic relaxation of the field-cooled and zero-field--cooled magnetization along the principal axes of an Y-Ba-Cu-O single crystal is reported and interpreted with a thermally activated flux-creep model.
Abstract: We report strong, anisotropic magnetic relaxation of the field-cooled and zero-field-cooled magnetization along the principal axes of an Y-Ba-Cu-O single crystal and interpret it with a thermally activated flux-creep model. A simple scaling argument shows that high thermal activation causes magnetic irreversibilities and critical currents to drop below the threshold of detectability at a reduced temperature difference $1\ensuremath{-}t$ proportional to ${H}^{\frac{2}{3}}$, a power frequently observed in experiment and in particular in our crystal.

1,358 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the peak in Fp scales as [Hc2(T)]2.5 if the temperature is changed; the maximum value of Fp occurred at the same value of reduced field regardless of temperature.
Abstract: For all hard high‐field superconductors examined to date, there is a maximum in the pinning force density Fp as a function of the reduced magnetic field h. Fietz and Webb first demonstrated in dilute Nb alloys that the peak in Fp scales as [Hc2(T)]2.5 if the temperature is changed; the maximum value of Fp occurred at the same value of reduced field regardless of temperature. Recent data on the temperature dependence of pinning in Nb3Sn, Nb–25% Zr and a Nb–Ti alloy, which exhibits the ``peak effect'', are analyzed to show that similar scaling laws are obeyed by these materials. All presently available evidence indicates however that the reduced field hp at which the maximum Fp occurs, as well as the height and shape of this maximum, can be altered by metallurgical treatment. Apparently weak pinning defects, or widely spaced ones, produce a small peak in Fp(h) at high h whereas strong closely spaced pins produce a large peak in Fp(h) at low h without producing much change in Fp(h) at high h. A model which p...

1,104 citations

Journal ArticleDOI
TL;DR: This work demonstrates a simple and industrially scaleable route that yields a 1.5–5-fold improvement in the in-magnetic-field current densities of conductors that are already of high quality.
Abstract: There are numerous potential applications for superconducting tapes based on YBa(2)Cu(3)O(7-x) (YBCO) films coated onto metallic substrates. A long-established goal of more than 15 years has been to understand the magnetic-flux pinning mechanisms that allow films to maintain high current densities out to high magnetic fields. In fact, films carry one to two orders of magnitude higher current densities than any other form of the material. For this reason, the idea of further improving pinning has received little attention. Now that commercialization of YBCO-tape conductors is much closer, an important goal for both better performance and lower fabrication costs is to achieve enhanced pinning in a practical way. In this work, we demonstrate a simple and industrially scaleable route that yields a 1.5-5-fold improvement in the in-magnetic-field current densities of conductors that are already of high quality.

1,057 citations

Journal ArticleDOI
TL;DR: In this article, expressions for flux-pinning in type II superconductors are derived from considerations of the nature of the interaction between individual flux-lines and pinning-centres, and of the geometry of th...
Abstract: Expressions for flux-pinning in type II superconductors are derived from considerations of the nature of the interaction between individual flux-lines and pinning-centres, and of the geometry of th...

1,011 citations


Network Information
Related Topics (5)
Superconductivity
71.9K papers, 1.3M citations
96% related
Magnetization
107.8K papers, 1.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
84% related
Doping
73.9K papers, 1.3M citations
83% related
Band gap
86.8K papers, 2.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202347
2022104
202167
202065
201999
201881