scispace - formally typeset


Flyback converter

About: Flyback converter is a(n) research topic. Over the lifetime, 16236 publication(s) have been published within this topic receiving 246479 citation(s).

More filters
Journal ArticleDOI
10 Dec 2002
TL;DR: The Z-source converter employs a unique impedance network to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source converters where a capacitor and inductor are used, respectively.
Abstract: This paper presents an impedance-source (or impedance-fed) power converter (abbreviated as Z-source converter) and its control method for implementing DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. The Z-source converter employs a unique impedance network (or circuit) to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source (or current-fed) converters where a capacitor and inductor are used, respectively. The Z-source converter overcomes the conceptual and theoretical barriers and limitations of the traditional voltage-source converter (abbreviated as V-source converter) and current-source converter (abbreviated as I-source converter) and provides a novel power conversion concept. The Z-source concept can be applied to all DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. To describe the operating principle and control, this paper focuses on an example: a Z-source inverter for DC-AC power conversion needed in fuel cell applications. Simulation and experimental results are presented to demonstrate the new features.

2,647 citations

Journal ArticleDOI
02 Oct 1988
Abstract: Three DC/DC converter topologies suitable for high-power-density high-power applications are presented. All three circuits operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency. The three-phase dual-bridge converter proposed is shown to have the most favorable characteristics. This converter consists of two three-phase inverter stages operating in a high-frequency six-step mode. In contrast to existing single-phase AC-link DC/DC converters, lower turn-off peak currents in the power devices and lower RMS current ratings for both the input and output filter capacitors are obtained. This is in addition to smaller filter element values due to the higher-frequency content of the input and output waveforms. Furthermore, the use of a three-phase symmetrical transformer instead of single-phase transformers and a better utilization of the available apparent power of the transformer (as a consequence of the controlled output inverter) significantly increase the power density attainable. >

1,693 citations

01 Jun 1978
Abstract: Fundamentals of Magnetics. Magnetic Materials and Their Characteristics. Magnetic Cores, Iron Alloy and Ferrites. Window Utilization and Magnet Wire. Transformer-Inductor Design. Transformer-Inductor Efficiency, Regulation, and Temperature Rise. Power Transformer Design. DC Inductor Design Gap Core. DC Inductor Design Powder Core. AC Inductor Design. Constant Voltage Transformer Design (CVT). Three Phase Transformer Design. Flyback Converter Design. Forward Converter Transformer and Inductor Design. Input Filter Design. Current Transformer Design. Winding Capacitance and Leakage Inductance. Quiet Converter Design. Rotary Transformer Design. Planar Transformers. Derivation for the Design Equations. Index.

938 citations

Proceedings ArticleDOI
07 Aug 2002
Abstract: A new LLC resonant converter is proposed for front end DC/DC conversion in a distributed power system. Three advantages are achieved with this resonant converter. First, ZVS turn on and low turn off current of MOSFETs are achieved. The switching loss is reduced so we can operate the converter at higher switching frequency. The second advantage is that with this topology, we can optimize the converter at high input voltage. Finally, with this topology, we can eliminate the secondary filter inductor, so the voltage stress on the secondary rectifier will be limited to two times the output voltage, better rectifier diodes can be used and secondary conduction loss can be reduced. The converter utilizes leakage and magnetizing inductance of a transformer. With magnetic integration concept, all the magnetic components can be built in one magnetic core. The operation and characteristic of this converter is introduced and efficiency comparison between this converter and a conventional PWM converter is given which shows a great improvement by using this topology.

882 citations

01 Jan 2008
Abstract: Preface. About the Author. List of Symbols. 1 Introduction. 1.1 Classification of Power Supplies. 1.2 Basic Functions of Voltage Regulators. 1.3 Power Relationships in DC-DC Converters. 1.4 DC Transfer Functions of DC-DC Converters. 1.5 Static Characteristics of DC Voltage Regulators. 1.6 Dynamic Characteristics of DC Voltage Regulators. 1.7 Linear Voltage Regulators. 1.8 Topologies of PWM DC-DC Converters 1.9 Relationships among Current, Voltage, Energy, and Power. 1.10 Electromagnetic Compatibility. 1.11 Summary. 1.12 References. 1.13 Review Questions. 1.14 Problems. 2 BuckPWMDC-DCConverter. 2.1 Introduction. 2.2 DC Analysis of PWM Buck Converter for CCM. 2.3 DC Analysis of PWM Buck Converter for DCM. 2.4 Buck Converter with Input Filter. 2.5 Buck Converter with Synchronous Rectifier. 2.6 Buck Converter with Positive Common Rail. 2.7 Tapped-Inductor Buck Converters. 2.8 Multiphase Buck Converter. 2.9 Summary. 2.10 References. 2.11 Review Questions. 2.12 Problems. 3 Boost PWM DC-DC Converter. 3.1 Introduction. 3.2 DC Analysis of PWM Boost Converter for CCM. 3.3 DC Analysis of PWM Boost Converter for DCM. 3.4 Bidirectional Buck and Boost Converters. 3.5 Tapped-Inductor Boost Converters. 3.6 Duality. 3.7 Power Factor Correction. 3.8 Summary. 3.9 References. 3.10 Review Questions. 3.11 Problems. 4 Buck-Boost PWM DC-DC Converter. 4.1 Introduction. 4.2 DC Analysis of PWM Buck-Boost Converter for CCM. 4.3 DC Analysis of PWM Buck-Boost Converter for DCM. 4.4 Bidirectional Buck-Boost Converter. 4.5 Synthesis of Buck-Boost Converter. 4.6 Synthesis of Boost-Buck (Cuk) Converter. 4.7 Noninverting Buck-Boost Converters. 4.8 Tapped-Inductor Buck-Boost Converters. 4.9 Summary. 4.10 References. 4.11 Review Questions. 4.12 Problems. 5 Flyback PWM DC-DC Converter. 5.1 Introduction. 5.2 Transformers. 5.3 DC Analysis of PWM Flyback Converter for CCM. 5.4 DC Analysis of PWM Flyback Converter for DCM. 5.5 Multiple-Output Flyback Converter. 5.6 Bidirectional Flyback Converter. 5.7 Ringing in Flyback Converter. 5.8 Flyback Converter with Active Clamping. 5.9 Two-Transistor Flyback Converter. 5.10 Summary. 5.11 References. 5.12 Review Questions. 5.13 Problems. 6 Forward PWM DC-DC Converter. 6.1 Introduction. 6.2 DC Analysis of PWM Forward Converter for CCM. 6.3 DC Analysis of PWM Forward Converter for DCM. 6.4 Multiple-Output Forward Converter. 6.5 Forward Converter with Synchronous Rectifier. 6.6 Forward Converters with Active Clamping. 6.7 Two-Switch Forward Converter. 6.8 Summary. 6.9 References. 6.10 Review Questions. 6.11 Problems. 7 Half-Bridge PWM DC-DC Converter. 7.1 Introduction. 7.2 DC Analysis of PWM Half-Bridge Converter for CCM. 7.3 DC Analysis of PWM Half-Bridge Converter for DCM. 7.4 Summary. 7.5 References. 7.6 Review Questions. 7.7 Problems. 8 Full-Bridge PWM DC-DC Converter. 8.1 Introduction. 8.2 DC Analysis of PWM Full-Bridge Converter for CCM. 8.3 DC Analysis of PWM Full-Bridge Converter for DCM. 8.4 Phase-Controlled Full-Bridge Converter. 8.5 Summary. 8.6 References. 8.7 Review Questions. 8.8 Problems. 9 Push-Pull PWM DC-DC Converter. 9.1 Introduction. 9.2 DC Analysis of PWM Push-Pull Converter for CCM. 9.3 DC Analysis of PWM Push-Pull Converter for DCM. 9.4 Comparison of PWM DC-DC Converters. 9.5 Summary. 9.6 References. 9.7 Review Questions. 9.8 Problems. 10 Small-Signal Models of PWM Converters for CCM and DCM. 10.1 Introduction. 10.2 Assumptions. 10.3 Averaged Model of Ideal Switching Network for CCM. 10.4 Averaged Values of Switched Resistances. 10.5 Model Reduction. 10.6 Large-Signal Averaged Model for CCM. 10.7 DC and Small-Signal Circuit Linear Models of Switching Network for CCM. 10.8 Family of PWM Converter Models for CCM. 10.9 PWM Small-Signal Switch Model for CCM. 10.10 Modeling of the Ideal Switching Network for DCM. 10.11 Averaged Parasitic Resistances for DCM. 10.12 Small-Signal Models of PWM Converters for DCM. 10.13 Summary. 10.14 References. 10.15 Review Questions. 10.16 Problems. 11 Open-Loop Small-Signal Characteristics of Boost Converter for CCM. 11.1 Introduction. 11.2 DC Characteristics. 11.3 Open-Loop Control-to-Output Transfer Function. 11.4 Delay in Open-Loop Control-to-Output Transfer Function. 11.5 Open-Loop Audio Susceptibility. 11.6 Open-Loop Input Impedance. 11.7 Open-Loop Output Impedance. 11.8 Open-Loop Step Responses. 11.9 Summary. 11.10 References. 11.11 Review Questions. 11.12 Problems. 12 Voltage-Mode Control of Boost Converter. 12.1 Introduction. 12.2 Circuit of Boost Converter with Voltage-Mode Control. 12.3 Pulse-Width Modulator. 12.4 Transfer Function of Modulator, Boost Converter Power Stage, and Feedback Network. 12.5 Error Amplifier. 12.6 Integral-Single-Lead Controller. 12.7 Integral-Double-Lead Controller. 12.8 Loop Gain. 12.9 Closed-Loop Control-to-Output Voltage Transfer Function. 12.10 Closed-Loop Audio Susceptibility. 12.11 Closed-Loop Input Impedance. 12.12 Closed-Loop Output Impedance. 12.13 Closed-Loop Step Responses. 12.14 Closed-Loop DC Transfer Functions. 12.15 Summary. 12.16 References. 12.17 Review Questions. 12.18 Problems. 13 Current-Mode Control. 13.1 Introduction. 13.2 Principle of Operation of PWM Converters with Peak-Current-Mode Control. 13.3 Relationship between Duty Cycle and Inductor-Current Slopes. 13.4 Instability of Closed-Current Loop. 13.5 Slope Compensation. 13.6 Sample-and-Hold Effect on Current Loop. 13.7 Current Loop in s -Domain. 13.8 Voltage Loop of PWM Converters with Current-Mode Control. 13.9 Feedforward Gains in PWM Converters with Current-Mode Control without Slope Compensation. 13.10 Feedforward Gains in PWM Converters with Current-Mode Control and Slope Compensation. 13.11 Closed-Loop Transfer Functions with Feedforward Gains. 13.12 Slope Compensation by Adding a Ramp to Inductor Current. 13.13 Relationships for Constant-Frequency Current-Mode On-Time Control. 13.14 Summary. 13.15 References. 13.16 Review Questions. 13.17 Problems. 13.18 Appendix: Sample-and-Hold Modeling. 14 Current-Mode Control of Boost Converter. 14.1 Introduction. 14.2 Open-Loop Small-Signal Transfer Functions. 14.3 Open-Loop Step Responses of Inductor Current. 14.5 Closed-Voltage-Loop Transfer Functions. 14.6 Closed-Loop Step Responses. 14.7 Closed-Loop DC Transfer Functions. 14.8 Summary. 14.9 References. 14.10 Review Questions. 14.11 Problems. 15 Silicon and Silicon Carbide Power Diodes. 15.1 Introduction. 15.2 Electronic Power Switches. 15.3 Intrinsic Semiconductors. 15.4 Extrinsic Semiconductors. 15.5 Silicon and Silicon Carbide. 15.6 Physical Structure of Junction Diodes. 15.7 Static I - V Diode Characteristic. 15.8 Breakdown Voltage of Junction Diodes. 15.9 Capacitances of Junction Diodes. 15.10 Reverse Recovery of pn Junction Diodes. 15.11 Schottky Diodes. 15.12 SPICE Model of Diodes. 15.13 Summary. 15.14 References. 15.15 Review Questions. 15.16 Problems. 16 Silicon and Silicon Carbide Power MOSFETs. 16.1 Introduction. 16.2 Physical Structure of Power MOSFETs. 16.3 Principle of Operation of Power MOSFETs. 16.4 Derivation of Power MOSFET Characteristics. 16.5 Power MOSFET Characteristics. 16.6 Mobility of Charge Carriers. 16.7 Short-Channel Effects. 16.8 Aspect Ratio of Power MOSFETs. 16.9 Breakdown Voltage of Power MOSFETs. 16.10 Gate Oxide Breakdown Voltageof Power MOSFETs. 16.11 Resistance of Drift Region. 16.12 Figures-of-Merit. 16.13 On-Resistance of Power MOSFETs. 16.14 Capacitances of Power MOSFETs. 16.15 Switching Waveforms. 16.16 SPICE Model of Power MOSFETs. 16.17 Insulated Gate Bipolar Transistors. 16.18 Heat Sinks. 16.19 Summary. 16.20 References. 16.21 Review Questions. 16.22 Problems. 17 Soft-Switching DC-DC Converters. 17.1 Introduction. 17.2 Zero-Voltage-Switching DC-DC Converters. 17.3 Buck ZVS Quasi-Resonant DC-DC Converter. 17.4 Boost ZVS Quasi-Resonant DC-DC Converter. 17.5 Zero-Current-Switching DC-DC Converters. 17.6 Boost ZCS Quasi-Resonant DC-DC Converter. 17.7 Multiresonant Converters. 17.8 Summary. 17.9 References. 17.10 Review Questions. 17.11 Problems. Appendix A Introduction to SPICE. Appendix B Introduction to MATLAB. Answers to Problems. Index.

705 citations

Network Information
Related Topics (5)

80.7K papers, 733.2K citations

95% related
Power factor

60.5K papers, 768.2K citations

94% related
AC power

80.9K papers, 880.8K citations

92% related

112.5K papers, 814.8K citations

88% related

166.6K papers, 1.4M citations

87% related
No. of papers in the topic in previous years