scispace - formally typeset
Search or ask a question
Topic

Flyback converter

About: Flyback converter is a research topic. Over the lifetime, 16236 publications have been published within this topic receiving 246479 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this article, where the measured absolute error between the sensed signal and the inductor current is less than 4%.
Abstract: A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this paper. With the proposed accurate on-chip current sensor, the sensed inductor current, combined with the internal ramp signal, can be used for current-mode DC-DC converter feedback control. In addition, no external components and no extra I/O pins are needed for the current-mode controller. The DC-DC converter has been fabricated with a standard 0.6-/spl mu/m CMOS process. The measured absolute error between the sensed signal and the inductor current is less than 4%. Experimental results show that this converter with on-chip current sensor can operate from 300 kHz to 1 MHz with supply voltage from 3 to 5.2 V, which is suitable for single-cell lithium-ion battery supply applications. The output ripple voltage is about 20 mV with a 10-/spl mu/F off-chip capacitor and 4.7-/spl mu/H off-chip inductor. The power efficiency is over 80% for load current from 50 to 450 mA.

513 citations

Journal ArticleDOI
TL;DR: This paper presents first an overview of the well-known voltage and current dc-link converter topologies used to implement a three-phase PWM ac-ac converter system, and a common knowledge basis of the individual converterTopologies is established.
Abstract: This paper presents first an overview of the well-known voltage and current dc-link converter topologies used to implement a three-phase PWM ac-ac converter system. Starting from the voltage source inverter and the current source rectifier, the basics of space vector modulation are summarized. Based on that, the topology of the indirect matrix converter (IMC) and its modulation are gradually developed from a voltage dc-link back-to-back converter by omitting the dc-link capacitor. In the next step, the topology of the conventional (direct) matrix converter (CMC) is introduced, and the relationship between the IMC and the CMCs is discussed in a figurative manner by investigating the switching states. Subsequently, three-phase ac-ac buck-type chopper circuits are considered as a special case of matrix converters (MCs), and a summary of extended MC topologies is provided, including three-level and hybrid MCs. Therewith, a common knowledge basis of the individual converter topologies is established.

489 citations

Journal ArticleDOI
TL;DR: A new topology for cascaded multilevel converter based on submultileVEL converter units and full-bridge converters is proposed, optimized for various objectives, such as the minimization of the number of switches, gate driver circuits and capacitors, and blocking voltage on switches.
Abstract: In this paper, a new topology for cascaded multilevel converter based on submultilevel converter units and full-bridge converters is proposed. The proposed topology significantly reduces the number of dc voltage sources, switches, IGBTs, and power diodes as the number of output voltage levels increases. Also, an algorithm to determine dc voltage sources magnitudes is proposed. To synthesize maximum levels at the output voltage, the proposed topology is optimized for various objectives, such as the minimization of the number of switches, gate driver circuits and capacitors, and blocking voltage on switches. The analytical analyses of the power losses of the proposed converter are also presented. The operation and performance of the proposed multilevel converter have been evaluated with the experimental results of a single-phase 125-level prototype converter.

471 citations

Journal ArticleDOI
TL;DR: A proper comparison is established among the most important non-isolated boost-based dc-dc converters regarding the voltage stress across the semiconductor elements, number of components and static gain.
Abstract: The major consideration in dc-dc conversion is often associated with high efficiency, reduced stresses involving semiconductors, low cost, simplicity and robustness of the involved topologies. In the last few years, high-step-up non-isolated dc-dc converters have become quite popular because of its wide applicability, especially considering that dc-ac converters must be typically supplied with high dc voltages. The conventional non-isolated boost converter is the most popular topology for this purpose, although the conversion efficiency is limited at high duty cycle values. In order to overcome such limitation and improve the conversion ratio, derived topologies can be found in numerous publications as possible solutions for the aforementioned applications. Within this context, this work intends to classify and review some of the most important non-isolated boost-based dc-dc converters. While many structures exist, they can be basically classified as converters with and without wide conversion ratio. Some of the main advantages and drawbacks regarding the existing approaches are also discussed. Finally, a proper comparison is established among the most significant converters regarding the voltage stress across the semiconductor elements, number of components and static gain.

459 citations

Journal ArticleDOI
01 Mar 2004
TL;DR: In this paper, a high-efficiency high step-up converter with low voltage stress on power switch, power diodes and output capacitors is proposed, which consists of an energy clamp circuit and a voltage boost cell.
Abstract: As a result of the equivalent series resistor of the boost inductor, conventional boost converters are not able to provide high voltage gain. A high-efficiency high step-up converter is proposed, with low voltage stress on power switch, power diodes and output capacitors. The circuit topology of the proposed converter consists of an energy clamp circuit and a voltage boost cell. The boost converter functions as an active clamp circuit to suppress the voltage spike on power switch during the turn-off transient period. The boost converter output terminal and flyback converter output terminal are serially connected to increase the output voltage gain with the coupled inductor. By serially connecting the secondary windings of the boost inductor, a high voltage gain is achieved with less voltage stress on the power devices, such as power MOSFET and power diodes. The operational principle and steady-state analysis are described. A 35 W converter with simulation and experimental results is presented to demonstrate the performance. It shows that the efficiency of the proposed converter is very high (nearly 93%) with four times the voltage output.

458 citations


Network Information
Related Topics (5)
Inverter
80.7K papers, 733.2K citations
95% related
Power factor
60.5K papers, 768.2K citations
94% related
AC power
80.9K papers, 880.8K citations
92% related
Stator
112.5K papers, 814.8K citations
88% related
Capacitor
166.6K papers, 1.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023148
2022360
2021113
2020227
2019228
2018293