scispace - formally typeset
Search or ask a question
Topic

Focused ion beam

About: Focused ion beam is a research topic. Over the lifetime, 12154 publications have been published within this topic receiving 179523 citations. The topic is also known as: FIB.


Papers
More filters
Journal ArticleDOI
TL;DR: A general nano-mechanical test platform capable of performing variable temperature and variable strain rate testing in situ in the scanning electron microscope is described, and the effects of indenter geometry and of radiation on imaging conditions are discussed.
Abstract: A general nano-mechanical test platform capable of performing variable temperature and variable strain rate testing in situ in the scanning electron microscope is described. A variety of test geometries are possible in combination with focused ion beam machining or other fabrication techniques: indentation, micro-compression, cantilever bending, and scratch testing. The system is intrinsically displacement-controlled, which allows it to function directly as a micro-scale thermomechanical test frame. Stable, elevated temperature indentation/micro-compression requires the indenter tip and the sample to be in thermal equilibrium to prevent thermal displacement drift due to thermal expansion. This is achieved through independent heating and temperature monitoring of both the indenter tip and sample. Furthermore, the apex temperature of the indenter tip is calibrated, which allows it to act as a referenced surface temperature probe during contact. A full description of the system is provided, and the effects of indenter geometry and of radiation on imaging conditions are discussed. The stabilization time and temperature distribution throughout the system as a function of temperature is characterized. The advantages of temperature monitoring and thermal calibration of the indenter tip are illustrated, which include the possibility of local thermal conductivity measurement. Finally, validation results using nanoindentation on fused silica and micro-compression of ⟨100⟩ silicon micro-pillars as a function of temperature up to 500 °C are presented, and procedures and considerations taken for these measurements are discussed. A brittle to ductile transition from fracture to splitting then plastic deformation is directly observed in the SEM for silicon as a function of temperature.

141 citations

Journal ArticleDOI
TL;DR: In this article, electron beam lithography and focused ion beam (FIB) were combined to make low-resistance ohmic contacts to individual bismuth nanowires.
Abstract: Techniques are presented for making ohmic contacts to nanowires with a thick oxide coating. Although experiments were carried out on Bi nanowires, the techniques described in this paper are generally applicable to other nanowire systems. Metal electrodes are patterned to individual Bi nanowires using, electron beam lithography. Imaging the chemical reaction on the atomic scale with in situ high-resolution transmission electron microscopy shows that annealing in H-2 or NH3 can reduce the nanowires' oxide coating completely. The high temperatures required for this annealing, however, are not compatible with the lithographic techniques. Low-resistance ohmic contacts to individual bismuth nanowires are achieved using a focused ion beam (FIB) to first sputter away the oxide layer and then deposit Pt contacts. By combining electron beam lithography and FIB techniques, ohmic contacts stable from 2 to 400 K are successfully made to the nanowires. A method for preventing the burnout of nanowires from electrostatic discharge is also developed.

140 citations

Journal ArticleDOI
TL;DR: In this article, focused ion beam (FIB) milling of ring-shaped trenches (ring drilling) induces controlled gradual strain relief at the surface of residually stressed samples, with the central island approaching the unstressed state.

139 citations

Journal ArticleDOI
TL;DR: In this paper, the three-dimensional microstructure of a porous composite cathode for lithium-ion cells has been analyzed by a combined focused ion beam (FIB)/scanning electron microscopy (SEM) approach.

138 citations

Patent
27 Jul 2002
TL;DR: In this article, a method and apparatus for electron beam processing using an electron beam (101) activated gas to etch or deposit material was presented, particularly suitable for repairing defects in lithography masks.
Abstract: A method and apparatus for electron beam processing using an electron beam (101) activated gas to etch or deposit material. The invention is particularly suitable for repairing defects in lithography masks. By using an electron beam (101) in place of an ion beam, the many problems associated with ion beam mask repair, such as staining and riverbedding, are eliminated. Endpoint detection is not critical because the electron beam and gas will not etch the substrate. In one embodiment, xenon ditluoride gas is activated by the electron beam (101) to etch a tungsten, tantalum nitride, or molybdenum silicide film on a transmission or reflection mask. To prevent spontaneous etching by the etchant gas in processed sites at which the passivation layer was removed, processed sites can be re-passivated before processing additional sites.

138 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
92% related
Silicon
196K papers, 3M citations
91% related
Amorphous solid
117K papers, 2.2M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022278
2021251
2020329
2019351
2018347