scispace - formally typeset
Search or ask a question
Topic

Focused ion beam

About: Focused ion beam is a research topic. Over the lifetime, 12154 publications have been published within this topic receiving 179523 citations. The topic is also known as: FIB.


Papers
More filters
Patent
29 Dec 2006
TL;DR: In this paper, conditions are maintained that produce a substantial ion density and limit the transverse kinetic energy of the ions to less than 0.7 eV; the ionization volume adjacent the aperture is limited to width less than about three times the width of the aperture; magnetic fields are avoided or limited; low ion beam noise is maintained; conditions within the ionisation chamber are maintained to prevent formation of an arc discharge.
Abstract: Ion implantation with high brightness, ion beam by ionizing gas or vapor, e.g. of dimers, or decaborane, by direct electron impact ionization adjacent the outlet aperture (46, 176) of the ionization chamber (80; 175)). Preferably: conditions are maintained that produce a substantial ion density and limit the transverse kinetic energy of the ions to less than 0.7 eV; width of the ionization volume adjacent the aperture is limited to width less than about three times the width of the aperture; the aperture is extremely elongated; magnetic fields are avoided or limited; low ion beam noise is maintained; conditions within the ionization chamber are maintained that prevent formation of an arc discharge. With ion beam optics, such as the batch implanter of Figure (20), or in serial implanters, ions from the ion source are transported to a target surface and implanted; advantageously, in some cases, in conjunction with acceleration-deceleration beam lines employing cluster ion beams. Also disclosed are electron gun constructions, ribbon sources for electrons and ionization chamber configurations. Forming features of semiconductor devices, e.g. drain extensions of CMOS devices, and doping of flat panels are shown.

102 citations

Journal ArticleDOI
01 Oct 2005-Micron
TL;DR: Two particular problems involving dentin, a structural analog of bone that makes up the bulk of the human tooth, are examined and FIB-milling was able to generate high-quality specimens that could be used for subsequent TEM examination.

102 citations

Journal ArticleDOI
TL;DR: In this article, a nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector.
Abstract: We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

102 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the focused ion beam (FIB) technique to obtain electron-transparent slices from specific parts of the wider veins and lifted out for TEM study.
Abstract: Transmission electron microscope samples were prepared of ALH 78045 and ALH 88045, two clay-and phyllosilicate-bearing Antarctic meteorites, using argon ion milling and focused ion beam (FIB) techniques. ALH 78045 contains clay- and phyllosilicate-filled veins that have formed by terrestrial weathering of olivine, orthopyroxene and metal. Very narrow (∼10 nm) intragranular clay-filled veins could be observed in the TEM samples prepared by argon ion milling, whereas differential thinning and lack of precision in the location of the electron-transparent areas hindered the study of wider (5 — 15 μm) phyllosilicate-filled intergranular veins. Using the FIB instrument, electron-transparent slices were cut from specific parts of the wider veins and lifted out for TEM study. Results show that these veins are occluded by cronstedtite, a mixed-valence Fe-rich phyllosilicate. This discovery shows that silicates can be both dissolved and precipitated during terrestrial weathering within the Antarctic ice. ALH 88045 is one of a small number of known CM1 carbonaceous chondrites. This meteorite is largely composed of flattened ellipsoidal aggregates of serpentine-group phyllosilicates. To determine the mineralogy and texture of phyllosilicates within specific aggregates, TEM samples were prepared by trenching into the cut edge of a sample using the FIB instrument. Results show that Mg-rich aggregates are composed of lath-shaped serpentine crystals with a ∼0.73 nm basal spacing, which is typical of the products of low temperature aqueous alteration within asteroidal parent bodies. Results of this work demonstrate that the FIB has enormous potential in a number of areas of Earth and planetary science.

102 citations

Journal ArticleDOI
TL;DR: In this article, a combination of focused ion beam (FIB) prepatterned Si(001) substrates and self-assembled Ge quantum dots (QDs) leads to the precise placement of QDs.
Abstract: One of the major challenges for the reliable use of self-organization phenomena for device applications is to accurately position quantum dots on the surface. A promising way to get ordered dots is to use prepatterned substrates. We show that a combination of focused ion beam (FIB) prepatterned Si(001) substrates and self-assembled Ge quantum dots (QDs) leads to the precise placement of QDs. The technological advantages of this method are to control the Ge dots size and location, and to scale down the interdots distance to ∼20nm. Regarding more fundamental aspects, the accurate control of nanopatterns characteristics allows us to investigate the influence of various experimental parameters on QDs formation. The process proposed consists mainly of three steps: (1) FIB nanopatterning; (2) ex situ cleaning of the FIB-patterned substrate in order to fully remove the Ga contamination before introduction into the molecular beam epitaxy (MBE) chamber; and (3) Ge deposition by solid source MBE. After optimization...

102 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
92% related
Silicon
196K papers, 3M citations
91% related
Amorphous solid
117K papers, 2.2M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022278
2021251
2020329
2019351
2018347