scispace - formally typeset
Search or ask a question
Topic

Focused ion beam

About: Focused ion beam is a research topic. Over the lifetime, 12154 publications have been published within this topic receiving 179523 citations. The topic is also known as: FIB.


Papers
More filters
Journal ArticleDOI
TL;DR: This review covers both fields of cryo-FIB applications: specimen preparation for TEM Cryo-tomography and volume imaging by cryo -FIB/SEM tomography.

94 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the effect of microdimpling on the mechanical properties of a 30NiCrMo12 nitride steel and developed a new theoretical energetic model to quantify this phenomenon.

94 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explain the occurrence of ion exchange and an index profile around the focal point inside a commercial crown glass formed by femtosecond laser irradiation, which indicates that local densification occurred in the glass.
Abstract: We explain the occurrence of ion exchange and an index profile around the focal point inside a commercial crown glass formed by femtosecond laser irradiation. The index profile in the photoinduced area has a ring-shaped pattern, which indicates that local densification occurred in the glass. An irregular surface reflecting the density distribution is formed around the focal point by dry etching process using a focused ion beam. By the irradiation of femtosecond laser pulses, the effect of ion exchange between the focal point and the surrounding area is also observed in the area in which local densification occurred.

94 citations

Journal ArticleDOI
TL;DR: In this article, the effect of surface layers, depletion layers, ion induced damage, and ion channeling on the measured charge pulse height is also considered, and this approach is shown how this approach can be used to simulate the charge pulse reduction due to ion-induced damage.
Abstract: The ion beam induced charge technique can image the depletion regions of microelectronic devices through their thick metallization and passivation layers, and buried dislocation networks in semiconductor material by measuring the number of charge carriers created by a focused MeV light ion beam scanning over the sample surface. In this paper it is shown how the charge pulse height can be calculated in terms of the ion type and energy, and the minority carrier diffusion length. The effect of surface layers, depletion layers, ion induced damage, and ion channeling on the measured charge pulse height are also considered. It is shown how this approach can be used to simulate the charge pulse height reduction due to ion induced damage.

94 citations

Journal ArticleDOI
TL;DR: HRTEM studies, in conjunction with quantitative X-ray diffraction, show that MAPbI3 perovskite within mesoporous TiO2 scaffold has equiaxed grains of size 10-20 nm and relatively low crystallinity, whereas in the authors' PSCs the grain size can be larger than 100 nm, and the grains can be elongated and textured, with relatively high crystallinity.
Abstract: The crystal morphology of organolead trihalide perovskite (OTP) light absorbers can have profound influence on the perovskite solar cells (PSCs) performance. Here we have used a combination of conventional transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), in cross-section and plan-view, to characterize the morphologies of a solution-processed OTP (CH3NH3PbI3 or MAPbI3) within mesoporous TiO2 scaffolds and within capping and planar layers. Studies of TEM specimens prepared with and without the use of focused ion beam (FIB) show that FIBing is a viable method for preparing TEM specimens. HRTEM studies, in conjunction with quantitative X-ray diffraction, show that MAPbI3 perovskite within mesoporous TiO2 scaffold has equiaxed grains of size 10–20 nm and relatively low crystallinity. In contrast, the grain size of MAPbI3 perovskite in the capping and the planar layers can be larger than 100 nm in our PSCs, and the grains can be elongated and textured, with relatively high crystallinity. ...

93 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
92% related
Silicon
196K papers, 3M citations
91% related
Amorphous solid
117K papers, 2.2M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Oxide
213.4K papers, 3.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022278
2021251
2020329
2019351
2018347