scispace - formally typeset


Folded inverted conformal antenna

About: Folded inverted conformal antenna is a(n) research topic. Over the lifetime, 4747 publication(s) have been published within this topic receiving 68000 citation(s).

More filters
Journal ArticleDOI
Abstract: To address the need for fundamental universally valid definitions of exact bandwidth and quality factor (Q) of tuned antennas, as well as the need for efficient accurate approximate formulas for computing this bandwidth and Q, exact and approximate expressions are found for the bandwidth and Q of a general single-feed (one-port) lossy or lossless linear antenna tuned to resonance or antiresonance. The approximate expression derived for the exact bandwidth of a tuned antenna differs from previous approximate expressions in that it is inversely proportional to the magnitude |Z'/sub 0/(/spl omega//sub 0/)| of the frequency derivative of the input impedance and, for not too large a bandwidth, it is nearly equal to the exact bandwidth of the tuned antenna at every frequency /spl omega//sub 0/, that is, throughout antiresonant as well as resonant frequency bands. It is also shown that an appropriately defined exact Q of a tuned lossy or lossless antenna is approximately proportional to |Z'/sub 0/(/spl omega//sub 0/)| and thus this Q is approximately inversely proportional to the bandwidth (for not too large a bandwidth) of a simply tuned antenna at all frequencies. The exact Q of a tuned antenna is defined in terms of average internal energies that emerge naturally from Maxwell's equations applied to the tuned antenna. These internal energies, which are similar but not identical to previously defined quality-factor energies, and the associated Q are proven to increase without bound as the size of an antenna is decreased. Numerical solutions to thin straight-wire and wire-loop lossy and lossless antennas, as well as to a Yagi antenna and a straight-wire antenna embedded in a lossy dispersive dielectric, confirm the accuracy of the approximate expressions and the inverse relationship between the defined bandwidth and the defined Q over frequency ranges that cover several resonant and antiresonant frequency bands.

831 citations

Journal ArticleDOI
Abstract: A coaxially-fed single-layer single-patch wide-band microstrip antenna in the form of a rectangular patch with a U-shaped slot is discussed. Measurements showed that this antenna can attain 10-40% impedance bandwidth without the need of adding parasitic patches in another layer or in the same layer.< >

704 citations

Journal ArticleDOI
Abstract: A variation of the aperture-coupled stacked patch microstrip antenna is presented, which greatly enhances its bandwidth. Bandwidths of up to one octave have been achieved. The impedance behavior of this antenna is compared with that of other wide-band microstrip radiators. Matching techniques for the antenna are presented and their relative merits discussed. The effects of varying several key physical parameters of the antenna are investigated, lending some insight into its wide-band operation. Variations on the design such as incorporation of additional patches are also discussed.

498 citations

Journal ArticleDOI
01 Jan 1995
Abstract: In personal communications, the electromagnetic interaction between handset-mounted antennas and the nearby biological tissue is a key consideration. This paper presents a thorough investigation of this antenna-tissue interaction using the finite-difference time-domain (FDTD) electromagnetic simulation approach with detailed models of real-life antennas on a transceiver handset. The monopole, side-mounted planar inverted F, top-mounted bent inverted F, and back-mounted planar inverted F antennas are selected as representative examples of external and internal configurations. Detailed models of the human head and hand are implemented to investigate the effects of the tissue location and physical model on the antenna performance. Experimental results are provided which support the computationally obtained conclusions. The specific absorption rate (SAR) in the tissue is examined for several different antenna/handset configurations. It is found that for a head-handset separation of 2 cm, the SAR in the head has a peak value between 0.9 and 3.8 mW/g and an average value between 0.06 and 0.10 mW/g for 1 W of power delivered to the antenna. Additionally, the head and hand absorb between 48 and 68% of the power delivered to the antenna. >

470 citations

Journal ArticleDOI
Abstract: Cellular telephone handsets are now being designed to have dual-mode capabilities. In particular, there is a requirement for internal antennas for GSM and DCS1800 systems. This paper describes a novel planar dual-band inverted-F antenna for cellular handsets, which operates at the 0.9-GHz and 1.8-GHz bands. The dual-band antenna has almost the same size as a conventional inverted-F antenna operating at 0.9 GHz and has an isolation between bands of better than 17 dB. The bandwidths of the antenna are close to those required for the above systems. Good dual-band action is also obtained for other frequency ratios in the range of 1.3-2.4. Studies also show that the dual-band antenna can operate with one or two feeds. A finite-difference time-domain analysis has been shown to give calculated results close to those measured.

436 citations

Network Information
Related Topics (5)
Microstrip antenna

43.9K papers, 604.4K citations

95% related
Antenna measurement

39.6K papers, 494.4K citations

95% related
Dipole antenna

38K papers, 513.8K citations

93% related
Antenna (radio)

208K papers, 1.8M citations

93% related
Bandwidth (signal processing)

48.5K papers, 600.7K citations

82% related
No. of papers in the topic in previous years