scispace - formally typeset
Search or ask a question
Topic

Folding (chemistry)

About: Folding (chemistry) is a research topic. Over the lifetime, 7855 publications have been published within this topic receiving 300617 citations. The topic is also known as: intramolecular self-assembly.


Papers
More filters
Journal ArticleDOI
20 Jul 1973-Science
TL;DR: Anfinsen as discussed by the authors provided a sketch of the rich history of research that provided the foundation for his work on protein folding and the Thermodynamic Hypothesis, and outlined potential avenues of current and future scientific exploration.
Abstract: Stanford Moore, William Stein, and Anfinsen were awarded the Nobel Prize in Chemistry in 1972 for \"their contribution to the understanding of the connection between chemical structure and catalytic activity of the active center of the ribonuclease molecule.\" In his Nobel Lecture, Anfinsen provided a sketch of the rich history of research that provided the foundation for his work on protein folding and the \"Thermodynamic Hypothesis,\" and outlined potential avenues of current and future scientific exploration.

6,520 citations

Journal ArticleDOI
TL;DR: This work develops an approach to detect noncovalent interactions in real space, based on the electron density and its derivatives, which provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids.
Abstract: Molecular structure does not easily identify the intricate noncovalent interactions that govern many areas of biology and chemistry, including design of new materials and drugs. We develop an approach to detect noncovalent interactions in real space, based on the electron density and its derivatives. Our approach reveals the underlying chemistry that compliments the covalent structure. It provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids. Most importantly, the method, requiring only knowledge of the atomic coordinates, is efficient and applicable to large systems, such as proteins or DNA. Across these applications, a view of nonbonded interactions emerges as continuous surfaces rather than close contacts between atom pairs, offering rich insight into the design of new and improved ligands.

5,731 citations

Journal ArticleDOI
01 Dec 1991-Proteins
TL;DR: It is demonstrated in this work that the surface tension, water‐organic solvent, transfer‐free energies and the thermodynamics of melting of linear alkanes provide fundamental insights into the nonpolar driving forces for protein folding and protein binding reactions.
Abstract: We demonstrate in this work that the surface tension, water-organic solvent, transfer-free energies and the thermodynamics of melting of linear alkanes provide fundamental insights into the nonpolar driving forces for protein folding and protein binding reactions. We first develop a model for the curvature dependence of the hydrophobic effect and find that the macroscopic concept of interfacial free energy is applicable at the molecular level. Application of a well-known relationship involving surface tension and adhesion energies reveals that dispersion forces play little or no net role in hydrophobic interactions; rather, the standard model of disruption of water structure (entropically driven at 25 degrees C) is correct. The hydrophobic interaction is found, in agreement with the classical picture, to provide a major driving force for protein folding. Analysis of the melting behavior of hydrocarbons reveals that close packing of the protein interior makes only a small free energy contribution to folding because the enthalpic gain resulting from increased dispersion interactions (relative to the liquid) is countered by the freezing of side chain motion. The identical effect should occur in association reactions, which may provide an enormous simplification in the evaluation of binding energies. Protein binding reactions, even between nearly planar or concave/convex interfaces, are found to have effective hydrophobicities considerably smaller than the prediction based on macroscopic surface tension. This is due to the formation of a concave collar region that usually accompanies complex formation. This effect may preclude the formation of complexes between convex surfaces.

5,295 citations

Journal ArticleDOI
TL;DR: The energy landscape theory of protein folding suggests that the most realistic model of a protein is a minimally frustrated heteropolymer with a rugged funnel-like landscape biased toward the native structure.
Abstract: ▪ Abstract The energy landscape theory of protein folding is a statistical description of a protein's potential surface. It assumes that folding occurs through organizing an ensemble of structures rather than through only a few uniquely defined structural intermediates. It suggests that the most realistic model of a protein is a minimally frustrated heteropolymer with a rugged funnel-like landscape biased toward the native structure. This statistical description has been developed using tools from the statistical mechanics of disordered systems, polymers, and phase transitions of finite systems. We review here its analytical background and contrast the phenomena in homopolymers, random heteropolymers, and protein-like heteropolymers that are kinetically and thermodynamically capable of folding. The connection between these statistical concepts and the results of minimalist models used in computer simulations is discussed. The review concludes with a brief discussion of how the theory helps in the interpre...

2,040 citations

Journal ArticleDOI
15 Oct 2010-Science
TL;DR: Simulation of the folding of a WW domain showed a well-defined folding pathway and simulation of the dynamics of bovine pancreatic trypsin inhibitor showed interconversion between distinct conformational states.
Abstract: Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics—protein folding and conformational change within the folded state—by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein’s constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.

1,650 citations


Network Information
Related Topics (5)
Protein structure
42.3K papers, 3M citations
88% related
Binding site
48.1K papers, 2.5M citations
83% related
Peptide sequence
84.1K papers, 4.3M citations
80% related
Peptide
48.6K papers, 1.5M citations
79% related
Protein subunit
33.2K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021271
2020200
2019188
2018217
2017221