scispace - formally typeset
Search or ask a question
Topic

Foraminifera

About: Foraminifera is a research topic. Over the lifetime, 9437 publications have been published within this topic receiving 291011 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors improved Oligocene to Miocene correlations of δ18O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6).
Abstract: Oxygen isotope records and glaciomarine sediments indicate at least an intermittent presence of large continental ice sheets on Antarctica since the earliest Oligocene (circa 35 Ma). The growth and decay of ice sheets during the Oligocene to modern “ice house world” caused glacioeustatic sea level changes. The early Eocene was an ice-free “greenhouse world,” but it is not clear if ice sheets existed during the middle to late Eocene “doubt house world.” Benthic foraminiferal δ18O records place limits on the history of glaciation, suggesting the presence of ice sheets at least intermittently since the earliest Oligocene. The best indicator of ice growth is a coeval increase in global benthic and western equatorial planktonic δ18O records. Although planktonic isotope records from the western equatorial regions are limited, subtropical planktonic foraminifera may also record such ice volume changes. It is difficult to apply these established principles to the Cenozoic δ18O record because of the lack of adequate data and problems in stratigraphic correlations that obscure isotope events. We improved Oligocene to Miocene correlations of δ18O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6). Benthic foraminiferal δ18O increases which are associated with the bases of Zones Oil (circa 35.8 Ma), Oi2 (circa 32.5 Ma), and Mil (circa 23.5 Ma) can be linked with δ18O increases in subtropical planktonic foraminifera and with intervals of glacial sedimentation on or near Antarctica. Our new correlations of middle Miocene benthic and western equatorial planktonic δ18O records show remarkable agreement in timing and amplitude. We interpret benthic-planktonic covariance to reflect substantial ice volume increases near the bases of Zones Mi2 (circa 16.1 Ma), Mi3 (circa 13.6 Ma), and possibly Mi5 (circa 11.3 Ma). Possible glacioeustatic lowerings are associated with the δ18O increases which culminated with the bases of Zone Mi4 (circa 12.6 Ma) and Mi6 (circa 9.6 Ma), although low-latitude planktonic δ18O records are required to test this. These inferred glacioeustatic lowerings can be linked to seismic and rock disconformities. For example, we link 12 Oligocene-early late Miocene inferred glacioeustatic lowerings with 12 of the sequence boundaries (= inferred eustatic lowerings) of Haq et al. (1987).

1,069 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed reconstruction of the geographic distribution of ∂13C in benthic foraminifera in the Atlantic Ocean during the last glacial maximum was presented.
Abstract: The degree of similarity of the ∂13C records of the planktonic foraminiferal species N. pachyderma and of the benthic foraminiferal genus Cibicides in the high-latitude basins of the world ocean is used as an indicator of the presence of deepwater sources during the last climatic cycle. Whereas continuous formation of deep water is recognized in the southern ocean, the Norwegian Sea stopped acting as a sink for surface water during isotope stage 4 and the remainder of the last glaciation. However, deep water formed in the north Atlantic south of the Norwegian Sea during the last climatic cycle as early as isotope substage 5d, and this area was also the only active northern source during stages 4–2. A detailed reconstruction of the geographic distribution of ∂13C in benthic foraminifera in the Atlantic Ocean during the last glacial maximum shows that the most important deepwater mass originated from the southern ocean, whereas the Glacial North Atlantic Deep Water cannot be traced south of 40°N. At shallower depth an oxygenated 13C rich Intermediate Water mass extended from 45°N to 15°S. In the Pacific Ocean a ventilation higher than the modern one was also found in open ocean in the depth range 700–2600 m and is best explained by stronger formation of Intermediate Water in high northern latitudes.

1,065 citations

Journal ArticleDOI
14 Jan 2000-Science
TL;DR: A deep-sea temperature record for the past 50 million years has been produced from the magnesium/calcium ratio (Mg/Ca) in benthic foraminiferal calcite as discussed by the authors.
Abstract: A deep-sea temperature record for the past 50 million years has been produced from the magnesium/calcium ratio (Mg/Ca) in benthic foraminiferal calcite. The record is strikingly similar in form to the corresponding benthic oxygen isotope (δ18O) record and defines an overall cooling of about 12°C in the deep oceans with four main cooling periods. Used in conjunction with the benthic δ18O record, the magnesium temperature record indicates that the first major accumulation of Antarctic ice occurred rapidly in the earliest Oligocene (34 million years ago) and was not accompanied by a decrease in deep-sea temperatures.

1,042 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a conceptual model which explains benthic foraminiferal microhabitat preferences in terms of differences in the downward organic flux in the sediment.

957 citations

Journal ArticleDOI
12 Jun 1970-Science
TL;DR: The diversity of a planktonic foraminiferal assemblage on the ocean floor depends on the state of preservation of that assemblages, and as dissolution progresses, species diversity decreases, but compound diversity first increases and then decreases; species dominance first decreases and then increases.
Abstract: The diversity of a planktonic foraminiferal assemblage on the ocean floor depends on the state of preservation of that assemblage. As dissolution progresses, species diversity (number of species in the assemblage) decreases, but compound diversity (based on relative species abundance) first increases and then decreases; species dominance first decreases and then increases. The reason for these changes is that the species most susceptible to solution deliver moresediment to the ocean floor than do species with solution-resistant shells, possibly because the more soluble tests are produced in surface waters, where growth and production are greatest.

875 citations


Network Information
Related Topics (5)
Cretaceous
20.4K papers, 528.8K citations
91% related
Glacial period
27.3K papers, 1.1M citations
89% related
Sedimentary rock
30.3K papers, 746.5K citations
88% related
Sedimentary depositional environment
20.7K papers, 457.7K citations
88% related
Holocene
24.4K papers, 830.7K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023377
2022766
2021304
2020299
2019294
2018342