scispace - formally typeset
Search or ask a question
Topic

Forcing (mathematics)

About: Forcing (mathematics) is a research topic. Over the lifetime, 3207 publications have been published within this topic receiving 141123 citations. The topic is also known as: unramified forcing.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
08 Feb 2001-Nature
TL;DR: Simulation of the evolution of the chemical composition of aerosols finds that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles.
Abstract: Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbon--soot--that is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed) or incorporated within them (internally mixed), or a black-carbon core could be surrounded by a well mixed shell. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.

2,297 citations

Journal ArticleDOI
TL;DR: In this paper, a linearized steady-state five-layer baroclinic model is used to study the response of a spherical atmosphere to thermal and orographic forcing.
Abstract: Motivated by some results from barotropic models, a linearized steady-state five-layer baroclinic model is used to study the response of a spherical atmosphere to thermal and orographic forcing. At low levels the significant perturbations are confined to the neighborhood of the source and for midlatitude thermal forcing these perturbations are crucially dependent on the vertical distribution of the source. In the upper troposphere the sources generate wavetrains which are very similar to those given by barotropic models. For a low-latitude source, long wavelengths propagate strongly polewards as well as eastwards. Shorter wavelengths are trapped equatorward of the poleward flank of the jet, resulting in a split of the wave-trains at this latitude. Using reasonable dissipation magnitudes, the easiest way to produce an appreciable response in middle and high latitudes is by subtropical forcing. These results suggest an explanation for the shapes of patterns described in observational studies. The t...

2,247 citations

Journal ArticleDOI
TL;DR: This paper examined the sensitivity of a climate model to a wide range of radiative forcings, including changes of solar irradiance, atmospheric CO2, O3, CFCs, clouds, aerosols, surface albedo, and a "ghost" forcing introduced at arbitrary heights, latitudes, longitudes, seasons, and times of day.
Abstract: We examine the sensitivity of a climate model to a wide range of radiative forcings, including changes of solar irradiance, atmospheric CO2, O3, CFCs, clouds, aerosols, surface albedo, and a “ghost” forcing introduced at arbitrary heights, latitudes, longitudes, seasons, and times of day. We show that, in general, the climate response, specifically the global mean temperature change, is sensitive to the altitude, latitude, and nature of the forcing; that is, the response to a given forcing can vary by 50% or more depending upon characteristics of the forcing other than its magnitude measured in watts per square meter. The consistency of the response among different forcings is higher, within 20% or better, for most of the globally distributed forcings suspected of influencing global mean temperature in the past century, but exceptions occur for certain changes of ozone or absorbing aerosols, for which the climate response is less well behaved. In all cases the physical basis for the variations of the response can be understood. The principal mechanisms involve alterations of lapse rate and decrease (increase) of large-scale cloud cover in layers that are preferentially heated (cooled). Although the magnitude of these effects must be model-dependent, the existence and sense of the mechanisms appear to be reasonable. Overall, we reaffirm the value of the radiative forcing concept for predicting climate response and for comparative studies of different forcings; indeed, the present results can help improve the accuracy of such analyses and define error estimates. Our results also emphasize the need for measurements having the specificity and precision needed to define poorly known forcings such as absorbing aerosols and ozone change. Available data on aerosol single scatter albedo imply that anthropogenic aerosols cause less cooling than has commonly been assumed. However, negative forcing due to the net ozone change since 1979 appears to have counterbalanced 30–50% of the positive forcing due to the increase of well-mixed greenhouse gases in the same period. As the net ozone change includes halogen-driven ozone depletion with negative radiative forcing and a tropospheric ozone increase with positive radiative forcing, it is possible that the halogen-driven ozone depletion has counterbalanced more than half of the radiative forcing due to well-mixed greenhouse gases since 1979.

2,044 citations

Journal ArticleDOI
TL;DR: A review of the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present-day concentra- tions of anthropogenic tropospheric aerosols since the Inter- governmental Panel on Climate Change (1996) is presented in this paper.
Abstract: This paper reviews the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present-day concentra- tions of anthropogenic tropospheric aerosols since Inter- governmental Panel on Climate Change (1996). The range of estimates of the global mean direct radiative forcing due to six distinct aerosol types is presented. Addition- ally, the indirect effect is split into two components corresponding to the radiative forcing due to modifica- tion of the radiative properties of clouds (cloud albedo effect) and the effects of anthropogenic aerosols upon the lifetime of clouds (cloud lifetime effect). The radia- tive forcing for anthropogenic sulphate aerosol ranges from 20.26 to 20.82 W m 22 . For fossil fuel black carbon the radiative forcing ranges from 10.16 W m 22 for an external mixture to 10.42 W m 22 for where the black carbon is modeled as internally mixed with sulphate aerosol. For fossil fuel organic carbon the two estimates of the likely weakest limit of the direct radiative forcing are 20.02 and 20.04 W m 22 . For biomass-burning sources of black carbon and organic carbon the com-

1,868 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
87% related
Sea surface temperature
21.2K papers, 874.7K citations
83% related
Precipitation
32.8K papers, 990.4K citations
81% related
Sea ice
24.3K papers, 876.6K citations
79% related
Convection
39.6K papers, 916.8K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,267
20222,374
2021176
2020171
2019134
2018117