scispace - formally typeset
Search or ask a question
Topic

Foreground detection

About: Foreground detection is a research topic. Over the lifetime, 1048 publications have been published within this topic receiving 38265 citations.


Papers
More filters
Proceedings ArticleDOI
23 Jun 1999
TL;DR: This paper discusses modeling each pixel as a mixture of Gaussians and using an on-line approximation to update the model, resulting in a stable, real-time outdoor tracker which reliably deals with lighting changes, repetitive motions from clutter, and long-term scene changes.
Abstract: A common method for real-time segmentation of moving regions in image sequences involves "background subtraction", or thresholding the error between an estimate of the image without moving objects and the current image. The numerous approaches to this problem differ in the type of background model used and the procedure used to update the model. This paper discusses modeling each pixel as a mixture of Gaussians and using an on-line approximation to update the model. The Gaussian, distributions of the adaptive mixture model are then evaluated to determine which are most likely to result from a background process. Each pixel is classified based on whether the Gaussian distribution which represents it most effectively is considered part of the background model. This results in a stable, real-time outdoor tracker which reliably deals with lighting changes, repetitive motions from clutter, and long-term scene changes. This system has been run almost continuously for 16 months, 24 hours a day, through rain and snow.

7,660 citations

Journal ArticleDOI
TL;DR: This paper focuses on motion tracking and shows how one can use observed motion to learn patterns of activity in a site and create a hierarchical binary-tree classification of the representations within a sequence.
Abstract: Our goal is to develop a visual monitoring system that passively observes moving objects in a site and learns patterns of activity from those observations. For extended sites, the system will require multiple cameras. Thus, key elements of the system are motion tracking, camera coordination, activity classification, and event detection. In this paper, we focus on motion tracking and show how one can use observed motion to learn patterns of activity in a site. Motion segmentation is based on an adaptive background subtraction method that models each pixel as a mixture of Gaussians and uses an online approximation to update the model. The Gaussian distributions are then evaluated to determine which are most likely to result from a background process. This yields a stable, real-time outdoor tracker that reliably deals with lighting changes, repetitive motions from clutter, and long-term scene changes. While a tracking system is unaware of the identity of any object it tracks, the identity remains the same for the entire tracking sequence. Our system leverages this information by accumulating joint co-occurrences of the representations within a sequence. These joint co-occurrence statistics are then used to create a hierarchical binary-tree classification of the representations. This method is useful for classifying sequences, as well as individual instances of activities in a site.

3,631 citations

Book ChapterDOI
26 Jun 2000
TL;DR: A novel non-parametric background model that can handle situations where the background of the scene is cluttered and not completely static but contains small motions such as tree branches and bushes is presented.
Abstract: Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a novel non-parametric background model and a background subtraction approach. The model can handle situations where the background of the scene is cluttered and not completely static but contains small motions such as tree branches and bushes. The model estimates the probability of observing pixel intensity values based on a sample of intensity values for each pixel. The model adapts quickly to changes in the scene which enables very sensitive detection of moving targets. We also show how the model can use color information to suppress detection of shadows. The implementation of the model runs in real-time for both gray level and color imagery. Evaluation shows that this approach achieves very sensitive detection with very low false alarm rates.

2,432 citations

Proceedings ArticleDOI
23 Aug 2004
TL;DR: An efficient adaptive algorithm using Gaussian mixture probability density is developed using Recursive equations to constantly update the parameters and but also to simultaneously select the appropriate number of components for each pixel.
Abstract: Background subtraction is a common computer vision task. We analyze the usual pixel-level approach. We develop an efficient adaptive algorithm using Gaussian mixture probability density. Recursive equations are used to constantly update the parameters and but also to simultaneously select the appropriate number of components for each pixel.

2,045 citations

Proceedings ArticleDOI
01 Sep 1999
TL;DR: This work develops Wallflower, a three-component system for background maintenance that is shown to outperform previous algorithms by handling a greater set of the difficult situations that can occur.
Abstract: Background maintenance is a frequent element of video surveillance systems. We develop Wallflower, a three-component system for background maintenance: the pixel-level component performs Wiener filtering to make probabilistic predictions of the expected background; the region-level component fills in homogeneous regions of foreground objects; and the frame-level component detects sudden, global changes in the image and swaps in better approximations of the background. We compare our system with 8 other background subtraction algorithms. Wallflower is shown to outperform previous algorithms by handling a greater set of the difficult situations that can occur. Finally, we analyze the experimental results and propose normative principles for background maintenance.

1,971 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
89% related
Image segmentation
79.6K papers, 1.8M citations
87% related
Feature (computer vision)
128.2K papers, 1.7M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
85% related
Support vector machine
73.6K papers, 1.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202235
202135
202050
201969
201898