scispace - formally typeset
Search or ask a question
Topic

Forest ecology

About: Forest ecology is a research topic. Over the lifetime, 18711 publications have been published within this topic receiving 618710 citations.


Papers
More filters
Journal ArticleDOI
15 Nov 2013-Science
TL;DR: Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally, and boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms.
Abstract: Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

7,890 citations

Book ChapterDOI
TL;DR: In this article, the authors reviewed the rates at which coarse wood debris is added and removed from ecosystems, the biomass found in streams and forests, and many functions that CWD serves.
Abstract: Publisher Summary This chapter reviews the rates at which Coarse Woody Debris (CWD) is added and removed from ecosystems, the biomass found in streams and forests, and many functions that CWD serves. CWD is an important component of temperate stream and forest ecosystems and is added to the ecosystem by numerous mechanisms, including wind, fire, insect attack, pathogens, competition, and geomorphic processes. Many factors control the rate at which CWD decomposes, including temperature, moisture, the internal gas composition of CWD, substrate quality, the size of the CWD, and the types of organisms involved. The mass of CWD in an ecosystem ideally represents the balance between addition and loss. In reality, slow decomposition rates and erratic variations in input of CWD cause the CWD mass to deviate markedly from steady-state projections. Many differences correspond to forest type, with deciduous-dominated systems having generally lower biomass than conifer-dominated systems. Stream size also influences CWD mass in lotic ecosystems, while successional stage dramatically influences CWD mass in boat aquatic and terrestrial settings. This chapter reviews many of these functions and concludes that CWD is an important functional component of stream and forest ecosystems. Better scientific understanding of these functions and the natural factors influencing CWD dynamics should lead to more enlightened management practices.

3,247 citations

Journal ArticleDOI
14 Jan 1994-Science
TL;DR: Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.
Abstract: Forest systems cover more than 4.1 x 109 hectares of the Earth9s land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 ± 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 ± 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 ± 0.4 petagrams of carbon per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon. Future forest carbon cycling trends attributable to losses and regrowth associated with global climate and land-use change are uncertain. Model projections and some results suggest that forests could be carbon sinks or sources in the future.

3,175 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe ways in which excess nitrogen from fossil fuel combustion may stress the biosphere, and the complexity of these effects on water quality and on forest nutrition is discussed.
Abstract: This article describes ways in which excess nitrogen from fossil fuel combustion may stress the biosphere. Nitrogen emissions can have a direct effect on air quality through both the oxidizing potential of nitrogen oxides and the role these compounds play in the formation of ozone. The complexity of these effects on water quality and on forest nutrition is discussed.

2,333 citations

Journal ArticleDOI
TL;DR: This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils, and ecological implications of these changes are described.
Abstract: Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.

2,268 citations


Network Information
Related Topics (5)
Ecosystem
25.4K papers, 1.2M citations
89% related
Vegetation
49.2K papers, 1.4M citations
89% related
Ecosystem services
28K papers, 997.1K citations
88% related
Biodiversity
44.8K papers, 1.9M citations
88% related
Species diversity
32.2K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023233
2022484
2021856
2020754
2019777
2018825