scispace - formally typeset
Search or ask a question
Topic

Förster resonance energy transfer

About: Förster resonance energy transfer is a research topic. Over the lifetime, 7658 publications have been published within this topic receiving 308179 citations. The topic is also known as: FRET & Fluorescence resonance energy transfer.


Papers
More filters
Journal ArticleDOI
28 Aug 1997-Nature
TL;DR: New fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations are constructed and dubbed ‘cameleons’.
Abstract: Important Ca2+ signals in the cytosol and organelles are often extremely localized and hard to measure. To overcome this problem we have constructed new fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations. We have dubbed these fluorescent indicators 'cameleons'. They consist of tandem fusions of a blue- or cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13, and an enhanced green- or yellow-emitting GFP. Binding of Ca2+ makes calmodulin wrap around the M13 domain, increasing the fluorescence resonance energy transfer (FRET) between the flanking GFPs. Calmodulin mutations can tune the Ca2+ affinities to measure free Ca2+ concentrations in the range 10(-8) to 10(-2) M. We have visualized free Ca2+ dynamics in the cytosol, nucleus and endoplasmic reticulum of single HeLa cells transfected with complementary DNAs encoding chimaeras bearing appropriate localization signals. Ca2+ concentration in the endoplasmic reticulum of individual cells ranged from 60 to 400 microM at rest, and 1 to 50 microM after Ca2+ mobilization. FRET is also an indicator of the reversible intermolecular association of cyan-GFP-labelled calmodulin with yellow-GFP-labelled M13. Thus FRET between GFP mutants can monitor localized Ca2+ signals and protein heterodimerization in individual live cells.

3,248 citations

Journal ArticleDOI
TL;DR: The development of an improved version of YFP named Venus, which contains a novel mutation, F46L, which at 37°C greatly accelerates oxidation of the chromophore, the rate-limiting step of maturation and will enable fluorescent labelings that were not possible before.
Abstract: The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has provided a myriad of applications for biological systems Over the last several years, mutagenesis studies have improved folding properties of GFP (refs 1,2) However, slow maturation is still a big obstacle to the use of GFP variants for visualization These problems are exacerbated when GFP variants are expressed at 37 degrees C and/or targeted to certain organelles Thus, obtaining GFP variants that mature more efficiently is crucial for the development of expanded research applications Among Aequorea GFP variants, yellow fluorescent proteins (YFPs) are relatively acid-sensitive, and uniquely quenched by chloride ion (Cl-) For YFP to be fully and stably fluorescent, mutations that decrease the sensitivity to both pH and Cl- are desired Here we describe the development of an improved version of YFP named "Venus" Venus contains a novel mutation, F46L, which at 37 degrees C greatly accelerates oxidation of the chromophore, the rate-limiting step of maturation As a result of other mutations, F64L/M153T/V163A/S175G, Venus folds well and is relatively tolerant of exposure to acidosis and Cl- We succeeded in efficiently targeting a neuropeptide Y-Venus fusion protein to the dense-core granules of PC12 cells Its secretion was readily monitored by measuring release of fluorescence into the medium The use of Venus as an acceptor allowed early detection of reliable signals of fluorescence resonance energy transfer (FRET) for Ca2+ measurements in brain slices With the improved speed and efficiency of maturation and the increased resistance to environment, Venus will enable fluorescent labelings that were not possible before

2,830 citations

Journal ArticleDOI
14 Apr 2006-Science
TL;DR: The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy.
Abstract: Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.

2,632 citations

Journal ArticleDOI
03 May 2002-Science
TL;DR: Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts, and the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.
Abstract: Many proteins associated with the plasma membrane are known to partition into submicroscopic sphingolipid- and cholesterol-rich domains called lipid rafts, but the determinants dictating this segregation of proteins in the membrane are poorly understood. We suppressed the tendency of Aequorea fluorescent proteins to dimerize and targeted these variants to the plasma membrane using several different types of lipid anchors. Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts. Thus the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.

2,217 citations


Network Information
Related Topics (5)
Protein structure
42.3K papers, 3M citations
87% related
Binding site
48.1K papers, 2.5M citations
86% related
DNA
107.1K papers, 4.7M citations
86% related
Phosphorylation
69.3K papers, 3.8M citations
84% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023668
20221,126
2021345
2020316
2019336
2018365