scispace - formally typeset
Search or ask a question
Topic

Four-wave mixing

About: Four-wave mixing is a research topic. Over the lifetime, 7530 publications have been published within this topic receiving 112702 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Four-wave mixing in wavelength-division-multiplexed soliton systems with damping and amplification is studied and an analytical model is introduced that explains the dramatic growth of the four-wave terms.
Abstract: Four-wave mixing in wavelength-division-multiplexed soliton systems with damping and amplification is studied. An analytical model is introduced that explains the dramatic growth of the four-wave terms. The model yields a resonance condition relating the soliton frequency and the amplifier distance. It correctly predicts all essential features regarding the resonant growth of the four-wave contributions.

55 citations

Journal ArticleDOI
Jing Suo1, Shuai Dong1, Wei Zhang1, Yidong Huang1, Jiangde Peng1 
TL;DR: Silicon micro-ring cavity is a promising candidate to realize high performance hyper-entanglement generation and the raw visibilities of all the measured interference fringes are higher than 1/2, the bench mark for violation of the Bell inequality.
Abstract: In this paper, hyper-entanglement on polarization and energy-time is generated based on a silicon micro-ring cavity. The silicon micro-ring cavity is placed in a fiber loop connected by a polarization beam splitter. Photon pairs are generated by the spontaneous four wave mixing (SFWM) in the cavity bi-directionally. The two photon states of photon pairs propagate along the two directions of the fiber loop and are superposed in the polarization beam splitter with orthogonal polarizations, leading to the polarization entanglement generation. On the other hand, the energy-time entanglement is an intrinsic property of photon pairs generated by the SFWM, which maintains in the process of the state superposition. The property of polarization entanglement is demonstrated by the two photon interferences under two non-orthogonal polarization bases. The property of energy-time entanglement is demonstrated by the Franson type interference under two non-orthogonal phase bases. The raw visibilities of all the measured interference fringes are higher than 1/2, the bench mark for violation of the Bell inequality. It indicates that silicon micro-ring cavity is a promising candidate to realize high performance hyper-entanglement generation.

55 citations

Journal ArticleDOI
TL;DR: This pulse energy is a 1-order-of-magnitude improvement compared with previous sub-100-fs sources in this wavelength range and the duration measurements are achieved by pump-probe ionization of Xe gas providing the cross correlation between the fifth harmonic and the fundamental.
Abstract: We report on the generation of femtosecond pulses at 160 nm with energies up to 240 nJ at 1 kHz repetition rate and sub-50-fs pulse duration. This pulse energy is a 1-order-of-magnitude improvement compared with previous sub-100-fs sources in this wavelength range. The pulses are generated by four-wave difference-frequency mixing process between the fundamental of a Ti:sapphire laser and its third harmonic in argon. Pulse duration measurements are achieved by pump–probe ionization of Xe gas providing the cross correlation between the fifth harmonic and the fundamental.

55 citations

Journal ArticleDOI
TL;DR: It will be shown that the transient-grating-scattering type of experiment with chirped pulses provides an immediate answer to the question of whether the dynamics of a system occurs on a fast and/or slow time scale.
Abstract: We will demonstrate that four-wave mixing with linearly chirped (phase-modulated) pulses is a unique tool for obtaining information on the dynamics and level structure of,a system. Especially, it will be shown that the transient-grating-scattering type of experiment with chirped pulses provides an immediate answer to the question of whether the dynamics of a system occurs on a fast and/or slow time scale. In addition, we present compelling evidence that chirped four-wave mixing in a molecular system is a viable method for measuring excited-state vibrational frequencies. Double-sided Feynman diagrams are used for a third-order perturbative calculation of two-level four-wave-mixing effects and chirped coherent Raman scattering. The diagrams provide a visual representation of the quantum-mechanical pathways that the system can take as a result of the different field interactions. The number of quantum-mechanical pathways that contribute to the signal is shown to depend on the chirp rate compared to the time scale(s) of the system dynamics. A stochastic model is used to describe the optical dynamics of the system. The resulting expressions for the third-order nonlinear polarization are so complex that numerical calculations are necessary to simulate the time dependence of the optical response. It will also be shown that our theoretical results in the appropriate limits converge to those obtained for impulsive or continuous-wave excitation.

54 citations

Journal ArticleDOI
TL;DR: In this article, the nonlinear interaction of light in vacuum was studied in the context of four wave mixing, and a third-order nonlinear effective susceptibility of vacuum was introduced.

54 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
93% related
Plasmon
32.5K papers, 983.9K citations
90% related
Laser
353.1K papers, 4.3M citations
88% related
Semiconductor
72.6K papers, 1.2M citations
87% related
Resonator
76.5K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202371
2022174
2021158
2020209
2019217
2018246