scispace - formally typeset
Search or ask a question
Topic

Fourier transform infrared spectroscopy

About: Fourier transform infrared spectroscopy is a research topic. Over the lifetime, 48250 publications have been published within this topic receiving 1134369 citations.


Papers
More filters
Journal ArticleDOI
30 Jan 2014
TL;DR: In this paper, the photocatalytic properties of the functional TiO2 and carbon nanocomposite were tested via the decomposition of an organic pollutant, and the catalytic activity of the covalently functionalized nanocomposition was found to be significantly enhanced in comparison to unfunctionalized composite and pristineTiO2 due to the synergistic effect of nanostructured TiO 2 and amorphous carbon bound via covalent bonds.
Abstract: TiO2 nanofibers (30–50 nm diameter), fabricated by the electro-spinning process, were modified with organo-silane agents via a coupling reaction and were grafted with carbohydrate molecules. The mixture was carbonized to produce a uniform coating of amorphous carbon on the surface of the TiO2 nanofibers. The TiO2@C nanofibers were characterized by high resolution electron microscopy (HRTEM), x-ray diffraction (XRD), x-ray photoelectron (XPS), Fourier transform infrared (FTIR) and UV-vis spectroscopy. The photocatalytic property of the functional TiO2 and carbon nanocomposite was tested via the decomposition of an organic pollutant. The catalytic activity of the covalently functionalized nanocomposite was found to be significantly enhanced in comparison to unfunctionalized composite and pristine TiO2 due to the synergistic effect of nanostructured TiO2 and amorphous carbon bound via covalent bonds. The improvement in performance is due to bandgap modification in the 1D co-axial nanostructure where the anatase phase is bound by nano-carbon, providing a large surface to volume ratio within a confined space. The superior photocatalytic performance and recyclability of 1D TiO2@C nanofiber composites for water purification were established through dye degradation experiments.

321 citations

Journal ArticleDOI
TL;DR: Porous silicon surfaces optimized for DIOS response were examined for their applicability to quantitative analysis, organic reaction monitoring, post-source decay mass spectrometry, and chromatography.
Abstract: Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is a novel method for generating and analyzing gas-phase ions that employs direct laser vaporization. The structure and physicochemical properties of the porous silicon surfaces are crucial to DIOS-MS performance and are controlled by the selection of silicon and the electrochemical etching conditions. Porous silicon generation and DIOS signals were examined as a function of silicon crystal orientation, resistivity, etching solution, etching current density, etching time, and irradiation. Pre- and postetching conditions were also examined for their effect on DIOS signal as were chemical modifications to examine stability with respect to surface oxidation. Pore size and other physical characteristics were examined by scanning electron microscopy and Fourier transform infrared spectroscopy, and correlated with DIOS-MS signal. Porous silicon surfaces optimized for DIOS response were examined for their applicability to quantitative analysis, ...

321 citations

Journal ArticleDOI
TL;DR: The CuFe2O4@C3N4 sample exhibited stable performance without obvious loss of catalytic activity after five successive runs, showing a promising application for the photo-oxidative degradation of environmental contaminants.

321 citations

Journal ArticleDOI
01 Jan 2003-Langmuir
TL;DR: In this paper, the surface and pore structures of porous polyethersulfone (PES) membranes were viewed using scanning electron microscopy (SEM), revealing no surface damage and only a slight alteration in pore structure.
Abstract: Hydrophilic modification of porous polyethersulfone (PES) membranes was achieved by Ar-plasma treatment followed by graft copolymerization with acrylamide (AAm) in the vapor phase. Both surfaces of the modified membranes were found to be highly hydrophilic, the permanency of which depends on the grafting yield. The graft reaction was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The grafting rate was dependent on plasma exposure time. The surface and pore structures of PES membranes were viewed using scanning electron microscopy (SEM), revealing no surface damage and only a slight alteration in pore structure. As a result of the incorporation of polar functionalities, the glass transition temperature (Tg) of both the Ar-plasma treated and AAm grafted membranes increased. A moderate change in the tensile strength of the modified membranes was also observed. Most importantly, the AAm grafting made the membrane surface less susceptible to adsorption o...

319 citations

Journal ArticleDOI
TL;DR: In this paper, the surface modification of polystyrene and polyethylene was evaluated by measuring the water contact angle of the samples before and after the modification, and the relationship between the plasma parameters and surface modification was discussed.

319 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
92% related
Adsorption
226.4K papers, 5.9M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236,741
202213,616
20212,802
20202,689
20192,808
20183,180