scispace - formally typeset
Search or ask a question
Topic

Fourier transform infrared spectroscopy

About: Fourier transform infrared spectroscopy is a research topic. Over the lifetime, 48250 publications have been published within this topic receiving 1134369 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, X-ray diffraction analysis, Fourier Transform Infrared (FTIR) and Vibrating Sample Magnetometer were carried out at room temperature to study the structural and magnetic properties of cobalt ferrite nanoparticles.

235 citations

Journal ArticleDOI
TL;DR: In this paper, size-controlled and coated magnetite nanoparticles with glucose and gluconic acid have been successfully synthesized via a simple and facile hydrothermal reduction route using a single iron precursor, FeCl3, and a combination of the inherent chemical reduction capability of sucrose decomposition products and their inorganic coordinating ability.
Abstract: Size-controlled and coated magnetite nanoparticles with glucose and gluconic acid have been successfully synthesized via a simple and facile hydrothermal reduction route using a single iron precursor, FeCl3, and a combination of the inherent chemical reduction capability of sucrose decomposition products and their inorganic coordinating ability. The particle size can be easily controlled in the range of 4−16 nm. Results obtained with and without the addition of sucrose indicate that sucrose is required for the formation of nanoscale and coated magnetite instead of the much larger hematite. Mass spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetry analysis were used to investigate the formation mechanism of the coated nanomagnetite from the single Fe(III) precursor in sucrose. Sucrose acts as a bifunctional agent: (i) it decomposes into reducing species, causing partial reduction of the Fe3+ ions to Fe2+ ions as required for the formation of Fe3O4 an...

235 citations

Journal ArticleDOI
TL;DR: In this paper, a graphite oxide (GO) was synthesized using two different methods: one with sulfuric acid as part of the oxidizing mixture (Hummers-Offeman method) and another one without the sulfur-containing compound involved in the oxidation process (Brodie method).
Abstract: Graphite oxide (GO) was synthesized using two different methods: one with sulfuric acid as part of the oxidizing mixture (Hummers–Offeman method) and another one without the sulfur-containing compound involved in the oxidation process (Brodie method). They were both tested for ammonia adsorption in dynamic conditions, at ambient temperature, and characterized before and after exposure to ammonia by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, potentiometric titration, energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS) and elemental analysis. Analyses of the initial materials showed that besides epoxy, hydroxyl and carboxylic groups, a significant amount of sulfur is incorporated as sulfonic group for GO prepared by the Hummers–Offeman method. The process of ammonia adsorption seems to be strongly related to the type of GO. For GO prepared by the Brodie method, ammonia is mainly retained via intercalation in the interlayer space of GO and by reaction with the carboxylic groups present at the edges of the graphene layers. On the contrary, when GO prepared by the Hummers method is used, the ways of retention are different: not only is the intercalation of ammonia observed but its reaction with the epoxy, carboxylic and sulfonic groups present is also observed. In particular, during the ammonia adsorption process, sulfonic groups are converted to sulfates in the presence of superoxide anions O2−*. These sulfates can then react with ammonia to form ammonium sulfates. For both GOs, an incorporation of a significant part of the ammonia adsorbed as amines in their structure is observed as a result of reactive adsorption.

235 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation of toxic gas (benzene and methanol) under visible light at room temperature was investigated using ZnO/CQDs nanocomposites.
Abstract: ZnO/carbon quantum dots (ZnO/CQDs) nanocomposites were prepared by a one-step hydrothermal reaction and used as superior photocatalysts for the degradation of toxic gas (benzene and methanol) under visible light at room temperature. The as-prepared ZnO/CQDs nanocomposites were characterized by X-ray powder diffraction, Raman spectra, Fourier transform infrared spectroscopy, UV-Vis absorption spectroscopy, scanning and transmission electron microscopy. The results show that these nanocomposites exhibit higher photocatalytic activity (degradation efficiency over 80%, 24 h) compared to N doped TiO2 and pure ZnO nanoparticles under visible light irradiation. In the present catalyst system, the crucial roles of CQDs in the enhancement of photocatalytic activity of the ZnO/CQDs nanocomposites are illustrated.

235 citations

Journal ArticleDOI
TL;DR: In this paper , the authors analyzed digested human lung tissue samples (n = 13) using μFTIR spectroscopy (size limitation of 3 μm) to detect and characterise any airborne microplastics present.

235 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
92% related
Adsorption
226.4K papers, 5.9M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Oxide
213.4K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236,741
202213,616
20212,802
20202,689
20192,808
20183,180