scispace - formally typeset
Search or ask a question
Topic

Fourier transform spectroscopy

About: Fourier transform spectroscopy is a research topic. Over the lifetime, 5418 publications have been published within this topic receiving 134133 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), TEM, HRTEM, photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance (EPR) were used to characterize the obtained Ca5(PO4)3OH samples.
Abstract: Hydroxyapatite (Ca5(PO4)3OH) nano- and microcrystals with multiform morphologies (separated nanowires, nanorods, microspheres, microflowers, and microsheets) have been successfully synthesized by a facile hydrothermal process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance (EPR) were used to characterize the samples. The experimental results indicate that the obtained Ca5(PO4)3OH samples show an intense and bright blue emission under long-wavelength UV light excitation. This blue emission might result from the CO2•− radical impurities in the crystal lattice. Furthermore, the organic additive (trisodium citrate) and pH values have an obvious impact on the morphologies and luminescence properties of the products to some degree. The possible formation ...

271 citations

Journal ArticleDOI
TL;DR: In this article, the luminescence properties of 3 μm thick, strongly emitting, and highly porous silicon films were studied using a combination of photoluminescence, transmission electron microscopy, and Fourier transform infrared spectroscopy.
Abstract: The luminescence properties of 3 μm thick, strongly emitting, and highly porous silicon films were studied using a combination of photoluminescence, transmission electron microscopy, and Fourier transform infrared spectroscopy. Transmission electron micrographs indicate that these samples have structures of predominantly 6–7 nm size clusters (instead of the postulated columns). In the as‐prepared films, there is a significant concentration of Si—H bonds which is gradually replaced by Si—O bonds during prolonged aging in air. Upon optical excitation these films exhibit strong visible emission peaking at ≊690 nm. The excitation edge is shown to be emission wavelength dependent, revealing the inhomogeneous nature of both the initially photoexcited and luminescing species. The photoluminescence decay profiles observed are highly nonexponential and decrease with increasing emission energy. The 1/e times observed typically range from 1 to 50 μs. The correlation of the spectral and structural information suggest...

268 citations

Journal ArticleDOI
TL;DR: In this article, the structure of magnetic powders were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), TEM, thermal gravity analysis (TGA) and differential thermal analysis (DTA) analysis, XPS, and Fourier transform infrared spectra (FTIR) techniques.

263 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive comparison between terahertz (THz) time-domain spectroscopy and conventional far-infrared Fourier transform spectrograms is performed, including radiation source, detector, signal to noise ratio, bandwidth, availability, applications, and uniqueness.
Abstract: We perform a comprehensive comparison between terahertz (THz) time-domain spectroscopy and conventional far-infrared Fourier transform spectroscopy, including radiation source, detector, signal to noise ratio, bandwidth, availability, applications, and their own uniqueness. In terms of signal to noise ratio, THz time-domain spectroscopy is advantageous at low frequencies under 3 THz, while Fourier transform spectroscopy works better at frequencies above 5 THz. In addition, we provide a detailed discussion of the unique features of THz time-domain spectroscopy and its application to dynamic and time-resolved processes.

258 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Excited state
102.2K papers, 2.2M citations
84% related
Dielectric
169.7K papers, 2.7M citations
81% related
Silicon
196K papers, 3M citations
80% related
Amorphous solid
117K papers, 2.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
2022117
202171
202076
2019108
201888