scispace - formally typeset
Topic

Fractography

About: Fractography is a(n) research topic. Over the lifetime, 5043 publication(s) have been published within this topic receiving 86068 citation(s).


Papers
More filters
Journal ArticleDOI
18 Jan 2010-Small
TL;DR: The fracture toughness, fracture energy, and fatigue properties of an epoxy polymer reinforced with various weight fractions of functionalized graphene sheets, and under fatigue conditions, are reported.
Abstract: Graphene, a single-atom-thick sheet of sp-bonded carbon atoms, has generatedmuch interest due to its high specific area and novel mechanical, electrical, and thermal properties. Recent advances in the production of bulk quantities of exfoliated graphene sheets from graphite have enabled the fabrication of graphene–polymer composites. Such composites show tremendous potential for mechanical-property enhancement due to their combination of high specific surface area, strong nanofiller–matrix adhesion and the outstanding mechanical properties of the sp carbon bonding network in graphene. Graphene fillers have been successfully dispersed in poly(styrene), poly(acrylonitrile) and poly(methyl methacrylate) matrices and the responses of their Young’s modulus, ultimate tensile strength, andglass-transition temperaturehave been characterized. However, to the best of our knowledge there is no report on the fracture toughness and fatigue properties of graphene–polymer composites. Fracture toughness describes the ability of a material containing a crack to resist fracture and it is a critically important material property for design applications. Fatigue involves dynamic propagation of cracks under cyclic loading and it is one of the primary causes of catastrophic failure in structural materials. Consequently, the material’s resistance to fracture and fatigue crack propagation are of paramount importance to prevent failure. Herein we report the fracture toughness, fracture energy, and fatigue properties of an epoxy polymer reinforced with various weight fractions of functionalized graphene sheets. Remarkably, only 0.125% weight of functionalized graphene sheets was observed to increase the fracture toughness of the pristine (unfilled) epoxy by 65% and the fracture energy by 115%.Toachievecomparableenhancement,carbonnanotube (CNT) and nanoparticle epoxy composites require one to two orders of magnitude larger weight fraction of nanofillers. Under fatigue conditions, incorporation of 0.125% weight of functionalized graphene sheets drastically reduced the rate of crack propagation in the epoxy 25-fold. Fractography analysis

748 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study was carried out on series of nanocomposites containing varying amounts of nanoparticles, either titanium dioxide (TiO 2 ) or aluminium oxide (Al 2 O 3 ).
Abstract: This study focuses to provide information about reinforcing influences of nanoparticles exerted on the mechanical and fracture mechanical properties of epoxy resins, particularly with regard to fracture and toughening mechanisms. A comprehensive study was carried out on series of nanocomposites containing varying amounts of nanoparticles, either titanium dioxide (TiO 2 ) or aluminium oxide (Al 2 O 3 ). Nanocomposites were systematically produced by applying high (shear) energy during a controlled dispersion process, in order to reduce the size of agglomerates and to gain a homogeneous distribution of individual nanoparticles within the epoxy resin. The mechanical performance of the nanocomposites was then characterized by flexural testing, dynamic mechanical analysis (DMA), and furthermore, by fracture mechanics approaches (LEFM) and fatigue crack growth testing (FCP). The microstructure of specimens and the corresponding fracture surfaces were examined by TEM, SEM and AFM techniques in order to identify the relevant fracture mechanisms involved, and to gain information about the dispersion quality of nanoparticles within the polymer. It was found that the presence of nanoparticles in epoxy induces various fracture mechanisms, e.g. crack deflection, plastic deformation, and crack pinning. At the same time, nanoparticles can overcome the drawbacks of traditional tougheners (e.g. glass beads or rubber particles) by simultaneously improving stiffness, strength and toughness of epoxy, without sacrificing thermo-mechanical properties.

705 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of fabrication orientation, surface polishing, and hot isostatic pressing upon mechanical behavior of four metallic alloys fabricated with layered, laser-heated methods of additive manufacturing (AM) was compared to that of similar alloys produced with conventional methods (wrought and machined).
Abstract: Mechanical behavior of four metallic alloys fabricated with layered, laser-heated methods of additive manufacturing (AM) was compared to that of similar alloys produced with conventional methods (wrought and machined). AM materials were produced by a leading commercial service provider, as opposed to incorporating material specimens produced by unique or specially-adapted equipment. The elastic moduli were measured in flexure, stress–strain characteristics were measured in tensile deformation, and fatigue strengths were measured in fully reversed bending. The effects of fabrication orientation, surface polishing, and hot isostatic pressing upon mechanical behavior were studied. The fatigue strengths exhibited by SLM AlSi10Mg and DMLS Ti6Al4V in the as-fabricated condition proved to be significantly inferior to that of conventional material. These lower fatigue strengths are a consequence of multiple fatigue cracks initiating at surface defects, internal voids and microcracks, and growing simultaneously during cyclic loading. Measured fatigue strengths of DMLS 316L and 17-4PH approached those of corresponding wrought materials when subjected to principal stresses aligned with the build planes. When cyclic stresses were applied across the build planes of the DMLS stainless steels, fatigue fractures often developed prematurely by separation of material. Post-processing the DMLS Ti6Al4V and SS316L with hot isostatic pressure elevated the fatigue strength significantly. Measurements of surface roughness with an optical profilometer, examinations of the material microstructures, and fractography contribute to an understanding of the mechanical behavior of the additive materials.

521 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the mechanisms of plastic fracture in high-purity and commercial 18 Ni, 200 grade maraging steels and quenched and tempered AISI 4340 steels.
Abstract: The mechanisms of plastic fracture (dimpled rupture) in high-purity and commercial 18 Ni, 200 grade maraging steels and quenched and tempered AISI 4340 steels have been studied. Plastic fracture takes place in the maraging alloys through void initiation by fracture of titanium carbo-nitride inclusions and the growth of these voids until impingement results in coalescence and final fracture. The fracture of AISI 4340 steel at a yield strength of 200 ksi (1378 MN/mm2) occurs by nucleation and subsequent growth of voids formed by fracture of the interface between manganese sulfide inclusions and the matrix. The growth of these inclusion-nucleated voids is interrupted long before coalescence by impingement, by the formation of void sheets which connect neighboring sulfide-nucleated voids. These sheets are composed of small voids nucleated by the cementite precipitates in the quenched and tempered structures. The sizes of non-metallic inclusions are an important aspect of the fracture resistance of these alloys since the investigation demonstrates that void nuclea-tion occurs more readily at the larger inclusions and that void growth also proceeds more rapidly from the larger inclusions. Using both notched and smooth round tensile specimens, it was demonstrated that the level of tensile stress triaxiality does not effect the void nu-cleation process in these alloys but that increased levels of triaxial tension do result in greatly increased rates of void growth and a concomitant reduction in the resistance to plastic fracture.

489 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the microstructure on the tensile properties of additive manufacturing (AM) of Ti alloys has been investigated. And the authors found that the mechanical anisotropy of the parts was discussed in relation to the crystallographic texture, phase composition and the predominant fracture mechanisms.
Abstract: Recent research on the additive manufacturing (AM) of Ti alloys has shown that the mechanical properties of the parts are affected by the characteristic microstructure that originates from the AM process. To understand the effect of the microstructure on the tensile properties, selective laser melted (SLM) Ti–6Al–4V samples built in three different orientations were tensile tested. The investigated samples were near fully dense, in two distinct conditions, as-built and stress relieved. It was found that the build orientation affects the tensile properties, and in particular the ductility of the samples. The mechanical anisotropy of the parts was discussed in relation to the crystallographic texture, phase composition and the predominant fracture mechanisms. Fractography and electron backscatter diffraction (EBSD) results indicate that the predominant fracture mechanism is intergranular fracture present along the grain boundaries and thus provide and explain the typical fracture surface features observed in fracture AM Ti–6Al–4V.

471 citations

Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
91% related
Alloy
171.8K papers, 1.7M citations
91% related
Fracture mechanics
58.3K papers, 1.3M citations
90% related
Grain boundary
70.1K papers, 1.5M citations
89% related
Ultimate tensile strength
129.2K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20227
2021229
2020206
2019205
2018176
2017183