scispace - formally typeset
Search or ask a question
Topic

Fractography

About: Fractography is a research topic. Over the lifetime, 5043 publications have been published within this topic receiving 86068 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied.
Abstract: The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Boron carbide particles were used as reinforcement. All composites were produced by hot extrusion. The tensile properties and fracture analysis of these materials were investigated at room temperature and at high temperature to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy.

115 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of hydrogen in the embrittling process of crack growth in high strength steels, and found that hydrogen is the hydrogen species responsible for embrittlement.
Abstract: Coordinated fracture mechanics and surface chemistry experiments were carried out to develop further understanding of environment enhanced subcritical crack growth in high strength steels. The kinetics of crack growth were determined for an AISI 4340 steel (tempered at 204°C) in hydrogen and in water, and the kinetics for the reactions of water with the same steel were also determined. A regime of rate limited (Stage II) crack growth was observed in each of the environments. Stage II crack growth was found to be thermally activated, with an apparent activation energy of 14.7 ±2.9 kJ/mole for crack growth in hydrogen, and 33.5 ± 5.0 kJ/mole in water. Fractographic evidence indicated that the fracture path through the microstructure was the same for these environments, and suggested hydrogen to be the embrittling species for environment enhanced crack growth in hydrogen and in water/water vapor. A slow step in the surface reaction of water vapor with steel was identified, and exhibited an activation energy of 36 ± 14 kJ/ mole. This reaction step was identified to be that for the nucleation and growth of oxide. The hydrogen responsible for embrittlement was presumed to be produced during this reaction. On the basis of a comparison of the activation energies, in conjunction with other supporting data, this slow step in the water/metal surface reaction was unambiguously identified as the rate controlling process for crack growth in water/water vapor. The inhibiting effect of oxygen and the influence of water vapor pressure on environment enhanced subcritical crack growth were considered. The influence of segregation of alloying and residual impurity elements on crack growth was also considered.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a fractography study indicated that fatigue cracking initiated from subsurface or surface inclusions and induced clusters of slip bands during the rotating bending test, resulting in a cleavage fracture over a large area.
Abstract: Samples prepared from as-extruded AZ61A bars (18 mm in diameter) were used in a rotating bending test. The relation between stress amplitude and cycles to failure has been constructed, as well as the cycles to failure at two specific stress amplitudes. The probability of failure at these two specific stress levels was also analyzed. This study finally provided the predicted fatigue strength at 10 7 cycles with different probabilities (10 to 90%). A fractography study indicated that fatigue cracking initiated from subsurface or surface inclusions. These inclusions near the surface served as stress raisers and induced clusters of slip bands during the rotating bending test. After initiation, the cracks grew under the dominant shear stress and resulted in a cleavage fracture over a large area. Microscopic cracks occurred, resulting from the induced deformation twins that developed from the blunting process. Consequently, the propagation of cracks followed the existence of microscopic cracks and resulted in a transgranular fracture.

114 citations

Journal ArticleDOI
TL;DR: In this article, the microscopic damage mechanisms operating in a hot-rolled magnesium alloy AZ31B are investigated under both uniaxial and controlled triaxial loadings, and their connection to macroscopic fracture strains and fracture mode (normal vs shear) is elucidated using postmortem fractography, interrupted tests, and microscopic analysis.
Abstract: The microscopic damage mechanisms operating in a hot-rolled magnesium alloy AZ31B are investigated under both uniaxial and controlled triaxial loadings. Their connection to macroscopic fracture strains and fracture mode (normal vs shear) is elucidated using postmortem fractography, interrupted tests, and microscopic analysis. The fracture locus (strain-to-failure vs stress triaxiality) exhibits a maximum at moderate triaxiality, and the strain-to-failure is found to be greater in notched specimens than in initially smooth ones. A transition from twinning-induced fracture under uniaxial loading to microvoid coalescence fracture under triaxial loading is evidenced. It is argued that this transition accounts in part for the observed greater ductility in notched bars. The evolution of plastic anisotropy with stress triaxiality is also investigated. It is inferred that anisotropic plasticity at a macroscopic scale suffices to account for the observed transition in the fracture mode from flat (triaxial loading) to shear-like (uniaxial loading). Damage is found to initiate at second-phase particles and deformation twins. Fracture surfaces of broken specimens exhibit granular morphology, coarse splits, twin-sized crack traces, as well as shallow and deep dimples, in proportions that depend on the overall stress triaxiality and fracture mode. An important finding is that AZ31B has a greater tolerance to ductile damage accumulation than has been believed thus far, based on the fracture behavior in uniaxial specimens. Another finding, common to both tension and compression, is the increase in volumetric strain, the microscopic origins of which remain to be elucidated.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties were investigated and the results indicated good potential for cold spray as a bulkforming process.
Abstract: Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10: Valimet H-20: and Brodmann Flomaster. ASTM E8 tensile specimens were machined from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300°C, 22h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulkforming process.

114 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
91% related
Alloy
171.8K papers, 1.7M citations
91% related
Fracture mechanics
58.3K papers, 1.3M citations
90% related
Grain boundary
70.1K papers, 1.5M citations
89% related
Ultimate tensile strength
129.2K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022254
2021229
2020206
2019205
2018176