scispace - formally typeset
Search or ask a question
Topic

Fracture toughness

About: Fracture toughness is a research topic. Over the lifetime, 39642 publications have been published within this topic receiving 854338 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The combined experiment and modelling verify the applicability of the classic Griffith theory of brittle fracture to graphene and quantifies the essential fracture properties of graphene and provides mechanistic insights into the mechanical failure of graphene.
Abstract: While the intrinsic strength of graphene has previously been demonstrated to be high, the fracture toughness remains unknown. Here, the authors perform in situ testing of graphene in a scanning electron microscope and report a critical stress intensity factor of ~4.0 MPa√m.

624 citations

Journal ArticleDOI
01 Jan 1998-Bone
TL;DR: Whether fracture of bone in three situations, allowing various amounts of damage prior to fracture, can provide a better insight into the fracture process and also the relative importance of these experimental methods for assessing the soundness of bone material is investigated.

616 citations

Journal ArticleDOI
TL;DR: In this article, the Vickers indentation fracture toughness test, or VIF, is addressed by considering its origins and the numerous equations that have been applied along with the technique to estimate the fracture resistance, or the KIc of ceramics.
Abstract: The Vickers indentation fracture toughness test, or VIF, is addressed by considering its origins and the numerous equations that have been applied along with the technique to estimate the fracture resistance, or the KIc of ceramics. Initiation and propagation of cracks during the VIF test are described and contrasted with the pre-cracking and crack growth for internationally standardized fracture toughness tests. It is concluded that the VIF test technique is fundamentally different than standard fracture toughness tests. The VIF test has a complex three-dimensional crack system with substantial deformation residual stresses and damage around the cracks. The VIF test relates to an ill-defined crack arrest condition as opposed to the rapid crack propagation of the standardized fracture toughness tests. Previously published fracture toughness results employing the VIF technique are reviewed. These reveal serious discrepancies in reported VIF fracture toughness values. Finally, recent fracture resistance measurements by the VIF technique for the Standard Reference Material SRM 2100 are presented. These are compared with standardized test results for the same material. It is concluded that the VIF technique is not reliable as a fracture toughness test for ceramics or for other brittle materials. What the VIF actually measures in terms of fracture resistance cannot be readily defined. It is recommended that the VIF technique no longer be acceptable for the fracture toughness testing of ceramic materials.

611 citations

Journal ArticleDOI
TL;DR: In this article, nineteen models and equations relating the degree of cracking to the fracture toughness are reviewed and then modified in a standard manner for both experimental convenience and direct comparison for both direct comparison.
Abstract: There is considerable interest in determining the fracture toughness of brittle materials by measuring the extent of cracking associated with a Vickers indentation because of the ease of specimen preparation and the simplicity of the test. However, confusion has been engendered by the multitude of models and equations in the literature relating the degree of cracking to the fracture toughness. In Part 1 of this work, nineteen of these equations are reviewed and then modified in a standard manner for both experimental convenience and direct comparison.MST/1050a

603 citations

Journal ArticleDOI
TL;DR: In this paper, the potential of carbon nanotubes as nanofillers in polymers, but also stresses out the limitations and challenges one has to face dealing with nanoparticles in general.

600 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
93% related
Microstructure
148.6K papers, 2.2M citations
91% related
Alloy
171.8K papers, 1.7M citations
90% related
Grain boundary
70.1K papers, 1.5M citations
88% related
Ceramic
155.2K papers, 1.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023972
20222,107
20211,361
20201,324
20191,383
20181,305