scispace - formally typeset
Search or ask a question
Topic

Fracture toughness

About: Fracture toughness is a research topic. Over the lifetime, 39642 publications have been published within this topic receiving 854338 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two types of Al2O3/Mo composites were fabricated by hot-pressing a mixture of γ- or α-Al 2O3 powder and a fine molybdenum powder.
Abstract: Two types of Al2O3/Mo composites were fabricated by hot-pressing a mixture of γ- or α-Al2O3 powder and a fine molybdenum powder. For Al2O3/5 vol% Mo composite using γ-Al2O3 as a starting powder, the elongated molybdenum layers were observed to surround a part of the Al2O3 grains, which resulted in an apparent high value of fracture toughness (7.1 Mpa m1/2). In the system using α-Al2O3 as a starting powder, nanometre sized molybdenum particles were dispersed within the Al2O3 grains and at the grain boundaries. Thus, it was confirmed that ceramic/metal nanocomposite was successfully fabricated in the Al2O3/Mo composite system. With increasing molybdenum content, the elongated molybdenum particles were formed at Al2O3 grain boundaries. Considerable improvements of mechanical properties were observed, such as hardness of 19.2 GPa, fracture strength of 884 MPa and toughness of 7.6 MPa m1/2 in the composites containing 5, 7.5, 20 vol% Mo, respectively; however, they were not enhanced simultaneously. The relationships between microstructure and mechanical properties are also discussed.

139 citations

Journal ArticleDOI
TL;DR: In this paper, the fracture energy consumed in creating the debonded interface and the stored strain energy in the whiskers, at failure, is dissipated as acoustic waves, which is the major contribution to toughness.
Abstract: Two whisker-toughened materials have been studied, with the objective of identifying the mechanisms that provide the major contribution to toughness. It is concluded that, for composites with randomly oriented whiskers, bending failure of the whiskers obviates pullout, whereupon the major toughening mechanisms are the fracture energy consumed in creating the debonded interface and the stored strain energy in the whiskers, at failure, which is dissipated as acoustic waves. The toughening potential is thus limited. High toughness requires extensive pullout and, hence, aligned whiskers with low fracture energy interfaces.

139 citations

Journal ArticleDOI
TL;DR: In this article, a modified model for crack-particle interactions in brittle composites is proposed to account for penetrable obstacles, obstacle shape and secondary crack interactions, which is applied to a glass-unbonded nickel sphere composite system.
Abstract: Previous models for crack-particle interactions in brittle composites are modified to account for penetrable obstacles, obstacle shape and secondary crack interactions. The modified model is applied to a glass-unbonded nickel sphere composite system, the experimental aspects of which were summarized in Part 1. Increases in fracture energy are explained in terms of local crack blunting. It is shown that these results fall, as expected, between those for an entirely sharp crack front and an entirely blunt one.

139 citations

Journal ArticleDOI
TL;DR: In this paper, a mechanism for the toughening of brittle matrices with ductile particles is presented, where the constraints imposed on the particles by the rigid matrix suppress plastic deformation of the particles at crack tips so that the main contribution to composite toughness comes from ligament formation in the matrix and their fracture behind the advancing crack front.
Abstract: A mechanism for the toughening of brittle matrices with ductile particles is presented. It is shown that the constraints imposed on the particles by the rigid matrix suppress plastic deformation of the particles at crack tips so that the main contribution to composite toughness comes from ligament formation in the matrix and their fracture behind the advancing crack front. The incorporation of inherently tough second-phase particles into a brittle matrix does not therefore automatically lead to a large toughness improvement of the composite, if other requirements are not satisfied. As far as toughness is concerned, the most desirable composite is one consisting of a soft (low yield strength) particle strongly bonded to a brittle matrix and free from internal stresses. The mechanism of stress relaxation in a spherical particle embedded in a matrix of smaller thermal expansion coefficient is also described.

139 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate quantitatively the effect of different types, frequencies and configurations of grain boundaries, so-called the grain boundary character distribution (GBCD), on the toughness of a 3D polycrystals.
Abstract: The structural dependence of intergranular fracture processes in bicrystals and polycrystals of metals and alloys is first reviewed. It is shown that even in polycrystals, grain boundary structure plays a significant role in controlling the fracture properties of the material. Next, we evaluate quantitatively the effect of different types, frequencies and configurations of grain boundaries, so-called the grain boundary character distribution (GBCD), on the toughness of a three-dimensional (3D) polycrystals. The results show that the toughness of a polycrystals increases monotonically with increasing overall fraction of fracture-resistant low-energy boundaries in the material. A brittle-ductile transition, corresponding to a change of fracture mode from predominantly intergranular with low toughness to predominantly transgranular with high toughness, is observed when the overall fraction of low-energy boundaries reaches a critical value. For a 3D polycrystals with a non-random GBCD such that the fraction of low-energy boundaries on the inclined boundary facets is maximised, a smaller critical overall fraction of low-energy boundaries is needed to bring about the brittle-ductile transition. Similar effect is also found if the grains are made elongated and aligned with the stress axis. The results are discussed in relation to the concept of grain boundary design for strong and tough polycrystals proposed by one of the present authors (T.W.).

139 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
93% related
Microstructure
148.6K papers, 2.2M citations
91% related
Alloy
171.8K papers, 1.7M citations
90% related
Grain boundary
70.1K papers, 1.5M citations
88% related
Ceramic
155.2K papers, 1.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023972
20222,107
20211,361
20201,324
20191,383
20181,305