Topic

# Frequency deviation

About: Frequency deviation is a(n) research topic. Over the lifetime, 5551 publication(s) have been published within this topic receiving 54365 citation(s). The topic is also known as: absolute frequency deviation.

...read more

##### Papers

More filters

••

01 Feb 1966-

Abstract: A theoretical development is presented which results in a relationship between the expectation value of the standard deviation of the frequency fluctuations for any finite number of data samples and the infinite time average value of the standard deviation, which provides an invariant measure of an important quality factor of a frequency standard. A practical and straightforward method of determining the power spectral density of the frequency fluctuations from the variance of the frequency fluctuations, the sampling time, the number of samples taken, and the dependence on system bandwidth is also developed. Additional insight is also given into some of the problems that arise from the presence of "flicker noise" (spectrum proportional to |ω|-1) modulation of the frequency of an oscillator. The theory is applied in classifying the types of noise on the signals of frequency standards made available at NBS, Boulder Laboratories, such as: masers (both H and N15H 3 ), the cesium beam frequency standard employed as the U. S. Frequency Standard, and rubidium gas cells. "Flicker noise" frequency modulation was not observed on the signals of masers for sampling times ranging from 0.1 second to 4 hours. In a comparison between the NBS hydrogen maser and the NBS III cesium beam, uncorrelated random noise was observed on the frequency fluctuations for sampling times extending to 4 hours; the fractional standard deviations of the frequency fluctuations were as low as 5 parts in 1014.

...read more

2,331 citations

••

TL;DR: It is shown that the nonlinear energy-tracking signal operator Psi and its discrete-time counterpart can estimate the amplitude envelope of AM signals and the instantaneous frequency of FM signals.

...read more

Abstract: It is shown that the nonlinear energy-tracking signal operator Psi (x)=(dx/dt)/sup 2/-xd/sup 2/x/dt/sup 2/ and its discrete-time counterpart can estimate the AM and FM modulating signals. Specifically, Psi can approximately estimate the amplitude envelope of AM signals and the instantaneous frequency of FM signals. Bounds are derived for the approximation errors, which are negligible under general realistic conditions. These results, coupled with the simplicity of Psi , establish the usefulness of the energy operator for AM and FM signal demodulation. These ideas are then extended to a more general class of signals that are sine waves with a time-varying amplitude and frequency and thus contain both an AM and an FM component; for such signals it is shown that Psi can approximately track the product of their amplitude envelope and their instantaneous frequency. The theoretical analysis is done for both continuous- and discrete-time signals. >

...read more

530 citations

••

Abstract: An assessment on the capability of a doubly fed induction generator (DFIG) wind turbine for frequency regulation is presented. Detailed aerodynamic, structural and electrical dynamic models were used in this study. A control loop acting on the frequency deviation was added to the inertia contributing loop in order to enhance the inertia support from the DFIG wind turbine. The possibility of de-loading a wind turbine to provide primary and secondary frequency response was discussed. A frequency droop controller was examined where the droop is operating on the electronic torque set point below its maximum speed and is operating on the pitch demand at maximum speed. It is also shown that by reducing the generator torque set point the DFIG wind turbine can provide high frequency response.

...read more

487 citations

••

Abstract: Global analysis of the power system markets shows that load frequency control (LFC) is one of the most profitable ancillary services of these systems. This service is related to the short-term balance of energy and frequency of the power systems and acquires a principal role to enable power exchanges and to provide better conditions for electricity trading. The main goal of the LFC problem is to maintain zero steady-state errors for frequency deviation and good tracking of load demands in a multi-area power system. This paper provides an overview of control strategies for researchers, as well as of their current use in the field of LFC problems. The history of control strategies is outlined. Various control methodologies based on the classical and optimal control, robust, adaptive, self-tuning control, VSC systems, digital and artificial intelligent/soft computing control techniques are discussed. We make various comparisons between these approaches, and the main advantages and disadvantages of the methods are presented. Finally, the investigations of the LFC problem incorporating BES/SMES, wind turbines and FACTs devices have also been discussed.

...read more

428 citations

••

Yutaka Ota

^{1}, Haruhito Taniguchi^{1}, Tatsuhito Nakajima^{1}, Kithsiri M. Liyanage^{2}+2 more•Institutions (2)TL;DR: An autonomous distributed V2G control scheme for smart charging control of electric vehicles and effect to the load frequency control is evaluated through a simulation by using a typical two area interconnected power grid model and an automotive lithium-ion battery model.

...read more

Abstract: To integrate large scale renewable energy sources in the power grid, the battery energy storage performs an important role for smoothing their natural intermittency and ensuring grid-wide frequency stability. Electric vehicles have not only large introduction potential but also much available time for control because they are almost plugged in the home outlets as distributed battery energy storages. Therefore, vehicle-to-grid (V2G) is expected to be one of the key technologies in smart grid strategies. This paper proposes an autonomous distributed V2G control scheme. A grid-connected electric vehicle supplies a distributed spinning reserve according to the frequency deviation at the plug-in terminal, which is a signal of supply and demand imbalance in the power grid. As a style of EV utilization, it is assumed that vehicle use set next plug-out timing in advance. In such assumption, user convenience is satisfied by performing a scheduled charging for the plug-out, and plug-in idle time is available for the V2G control. Therefore a smart charging control is considered in the proposed scheme. Satisfaction of vehicle user convenience and effect to the load frequency control is evaluated through a simulation by using a typical two area interconnected power grid model and an automotive lithium-ion battery model.

...read more

367 citations