scispace - formally typeset
Search or ask a question
Topic

Frequency response

About: Frequency response is a research topic. Over the lifetime, 25705 publications have been published within this topic receiving 332249 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that there is a single critical rod in the optimized bend structure that exhibits an extraordinary high sensitivity at a given frequency, and power reflection becomes tunable from 0 % up to 100 % involving only small changes in the critical rod's properties.
Abstract: We perform a simple sensitivity analysis of a W1 waveguide bend in a photonic crystal (PhC) where we use the information obtained to optimize the PhC bend's frequency response. Within a single optimization step we already achieve very low power reflection coefficients over almost the entire frequency range of the photonic bandgap (PBG), i.e., an achromatic bend. A further analysis shows that there is a single critical rod in the optimized bend structure that exhibits an extraordinary high sensitivity at a given frequency. Hence power reflection becomes tunable from 0 % up to 100 % involving only small changes in the critical rod's properties. This opens the door to novel topologies for compact switches and sensor applications.

84 citations

Journal ArticleDOI
TL;DR: In this article, the frequency response and equivalent lumped elements of a condenser microphone in terms of its fundamental geometrical and material properties were analyzed using B&K pressure microphones.
Abstract: Modifications to prior theory yield expressions for the frequency response and equivalent lumped elements of a condenser microphone in terms of its fundamental geometrical and material properties. Results of the analysis show excellent agreement with experimental data taken on B&K pressure microphone types 4134 and 4146.

84 citations

Book
15 Oct 1997
TL;DR: In this article, a strategy for Structural-Acoustic problems is proposed for solving structural-acoustic problems, based on Variational Formulations of Variational Variational Functions for the Master Structure.
Abstract: A Strategy for Structural-Acoustic Problems. Basic Notions on Variational Formulations. Linearized Vibrations of Conservative Structures and Structural Modes. Dissipative Constitutive Equation for the Master Structure. Master Structure Frequency Response Function. Calculation of the Master Structure Frequency Response function in the LF Range. Calculation of the Master Structure Frequency Response Function in the MF Range. Reduced Model in the MF Range. Response to Deterministic and Random Excitations. Linear Acoustic Equations. Internal Acoustic Fluid Formulation for the LF and MF Ranges. External Acoustic Fluid: Boundary Integral Formulation for the LF and MF Ranges. Structural-Acoustic Master System in the LF Range. Structural-Acoustic Master System in the MF Range. Fuzzy Structure Theory. Appendix: Mathematical Notations. References. Subject Index. Symbol Index.

84 citations

Journal ArticleDOI
TL;DR: In this article, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach, where the reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model.
Abstract: In this paper, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach. The reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model. The first-order shear deformation theory and von Karman-type kinematic relations are employed. The governing equations and the corresponding boundary conditions are derived with the use of Hamilton's principle. The generalized differential quadrature (GDQ) method is utilized to achieve a discretized set of nonlinear governing equations. A Galerkin-based scheme is then applied to obtain a time-varying set of ordinary differential equations of Duffing-type. Subsequently, a time periodic discretization is done and the frequency response of plates is determined via the pseudo-arc length continuation method. Selected numerical results are given for the effects of different parameters on the nonlinear forced vibration characteristics of uniformly distributed carbon nanotube- and FG carbon nanotube-reinforced composite plates. It is found that with the increase of CNT volume fraction, the flexural stiffness of plate increases; and hence its natural frequency gets larger. Moreover, it is observed that the distribution type of CNTs significantly affects the vibrational behavior of plate. The results also show that when the mid-plane of plate is CNT-rich, the natural frequency takes its minimum value and the hardening-type response of plate is intensified.

84 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate theoretically and experimentally the potential of a vibro-impact type nonlinear energy sink (VI-NES) to mitigate vibrations of a linear oscillator (LO) subjected to a harmonic excitation.
Abstract: Recently, it has been demonstrated that a vibro-impact type nonlinear energy sink (VI-NES) can be used efficiently to mitigate vibration of a linear oscillator (LO) under transient loading. The objective of this paper is to investigate theoretically and experimentally the potential of a VI-NES to mitigate vibrations of a LO subjected to a harmonic excitation (nevertheless, the presentation of an optimal VI-NES is beyond the scope of this paper). Due to the small mass ratio between the LO and the flying mass of the NES, the obtained equation of motion are analyzed using the method of multiple scales in the case of 1 : 1 resonance. It is shown that in addition to periodic response, system with VI-NES can exhibit strongly modulated response (SMR). Experimentally, the whole system is embedded on an electrodynamic shaker. The VI-NES is realized with a ball which is free to move in a cavity with a predesigned gap. The mass of the ball is less than 1% of the mass of the LO. The experiment confirms the existence of periodic and SMR response regimes. A good agreement between theoretical and experimental results is observed.

84 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Nonlinear system
208.1K papers, 4M citations
83% related
Signal
674.2K papers, 4.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023154
2022389
2021857
20201,105
20191,212
20181,152