scispace - formally typeset
Search or ask a question
Topic

Frequency response

About: Frequency response is a research topic. Over the lifetime, 25705 publications have been published within this topic receiving 332249 citations.


Papers
More filters
Patent
09 Sep 1976
TL;DR: An improved electrosurgical safety circuit where the currents in the active and patient leads are monitored, the monitored currents being respectively rectified and then subtracted from one another is presented in this paper.
Abstract: An improved electrosurgical safety circuit where the currents in the active and patient leads are monitored, the monitored currents being respectively rectified and then subtracted from one another. Whenever the active current exceeds the patient or return current by an amount corresponding to a dynamically variable threshold, an appropriate measure is taken such as the sounding of an alarm and/or the de-energization of the electrosurgical generator. The dynamic threshold varies in accordance with the level of the signal applied to the patient and compensates for leakage current through stray capacitance from the active lead to ground. The patient lead is substantially grounded at radio frequencies through a frequency sensitive network. The frequency sensitive network may include a capacitor, the value of which is such as to provide the foregoing frequency response. Since as small a capacitor as possible must be used to provide a high impedance at low frequencies, and since the radio frequency voltage across the capacitor must be kept low to thereby keep the voltage patient low at radio frequencies, a further network is employed to enable the use of a small capacitor while at the same time decreasing the effective voltage thereacross whereby protection of the patient is enhanced.

108 citations

Journal ArticleDOI
Tian-Bo Deng1
TL;DR: A closed-form solution for designing variable one-dimensional (1-D) finite-impulse-response (FIR) digital filters with simultaneously tunable magnitude and tunable fractional phase-delay responses and shows that the resulting variable FIR filter can be efficiently implemented by generalizing Farrow structure to the two-parameter case.
Abstract: This paper proposes a closed-form solution for designing variable one-dimensional (1-D) finite-impulse-response (FIR) digital filters with simultaneously tunable magnitude and tunable fractional phase-delay responses. First, each coefficient of a variable FIR filter is expressed as a two-dimensional (2-D) polynomial of a pair of parameters called spectral parameters; one is for independently tuning the cutoff frequency of the magnitude response, and the other is for independently tuning fractional phase-delay. Then, the closed-form error function between the desired and actual variable frequency responses is derived without discretizing any design parameters such as the frequency and the two spectral parameters. Finally, the optimal solution for the 2-D polynomial coefficients can be easily determined through minimizing the closed-form error function. We also show that the resulting variable FIR filter can be efficiently implemented by generalizing Farrow structure to our two-parameter case. The generalized Farrow structure requires only a small number of multiplications and additions for obtaining any new frequency characteristic, which is particularly suitable for high-speed tuning.

108 citations

Journal ArticleDOI
TL;DR: A novel frequency-constrained stochastic unit commitment model is proposed which co-optimizes energy production along with the provision of synchronized and synthetic inertia, enhanced frequency response, primary frequency response and a dynamically-reduced largest power infeed.
Abstract: The reduced level of system inertia in low-carbon power grids increases the need for alternative frequency services. However, simultaneously optimizing the provision of these services in the scheduling process, subject to significant uncertainty, is a complex task given the challenge of linking the steady-state optimization with frequency dynamics. This paper proposes a novel frequency-constrained stochastic unit commitment model which, for the first time, co-optimizes energy production along with the provision of synchronized and synthetic inertia, enhanced frequency response, primary frequency response and a dynamically-reduced largest power infeed. The contribution of load damping is modeled through a linear inner approximation. The effectiveness of the proposed model is demonstrated through several case studies for Great Britain's 2030 power system, which highlight the synergies and conflicts among alternative frequency services, as well as the significant economic savings and carbon reduction achieved by simultaneously optimizing all these services.

108 citations

Journal ArticleDOI
TL;DR: In this article, an M-shaped nonlinear bent beam with clamped end conditions is presented and investigated for bandwidth enhancement under base excitation, which can be used in piezoelectric and electromagnetic energy harvesting as well as their hybrid combinations.

107 citations

Journal ArticleDOI
TL;DR: In this article, a simplified small-signal type 3 wind turbine model with typical d f /dt inertia control is developed for studying frequency dynamics in power systems, and the simulated results verify that the proposed model is effective for analyzing system frequency dynamics, and that the test system frequency characteristics can be improved based on tuning the mass-spring- damping coefficients of Type 3 WTs.
Abstract: A model for Type 3 wind turbines (WTs) with typical d f /dt inertia control is developed for studying frequency dynamics in power systems. A simplified small-signal Type 3 WT model with d f /dt control is first constructed based on the mass-spring-damping concept, such that the physical properties and frequency response of a Type 3 WT can be clearly understood, besides the frequency-domain expressions of the available inertia and the corresponding damping coefficient can be directly derived. The manifested inertia is apparently controllable and frequency-dependent, but differs from the constant inertia featured in a conventional synchronous generator (SG). Furthermore, the frequency response model of a generic two-machine system, composed of an SG and an aggregate Type 3 WTs, is established. The model synthetically considers the effects of the WTs’ different controller parameters, operating points, and the SG's governor response on system frequency characteristics. Then, time-domain simulations on the studied two-machine system are performed in MATLAB/Simulink. The simulated results verify that the proposed model is effective for analyzing system frequency dynamics, and that the test system frequency characteristics can be improved based on tuning the mass-spring- damping coefficients of Type 3 WTs.

107 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Nonlinear system
208.1K papers, 4M citations
83% related
Signal
674.2K papers, 4.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023154
2022389
2021857
20201,105
20191,212
20181,152