scispace - formally typeset
Search or ask a question
Topic

Fresnel equations

About: Fresnel equations is a research topic. Over the lifetime, 2770 publications have been published within this topic receiving 54069 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The usual transfer matrix was modified to a generic form, with the ability to use the absolute squares of the Fresnel coefficients, so as to include incoherent (thick layers) and partially coherent (rough surface or interfaces) reflection and transmission.
Abstract: The optical response of coherent thin-film multilayers is often represented with Fresnel coefficients in a 2 x 2 matrix configuration. Here the usual transfer matrix was modified to a generic form, with the ability to use the absolute squares of the Fresnel coefficients, so as to include incoherent (thick layers) and partially coherent (rough surface or interfaces) reflection and transmission. The method is integrated by use of models for refractive-index depth profiling. The utility of the method is illustrated with various multilayer structures formed by ion implantation into Si, including buried insulating and conducting layers, and multilayers with a thick incoherent layer in an arbitrary position.

650 citations

Journal ArticleDOI
31 Mar 2000-Science
TL;DR: Multilayer mirrors that maintain or increase their reflectivity with increasing incidence angle can be constructed using polymers that exhibit large birefringence in their indices of refraction using materials and processes amenable to large-scale manufacturing.
Abstract: Multilayer mirrors that maintain or increase their reflectivity with increasing incidence angle can be constructed using polymers that exhibit large birefringence in their indices of refraction. The most important feature of these multilayer interference stacks is the index difference in the thickness direction (z axis) relative to the in-plane directions of the film. This z-axis refractive index difference provides a variable that determines the existence and value of the Brewster's angle at layer interfaces, and it controls both the interfacial Fresnel reflection coefficient and the phase relations that determine the optics of multilayer stacks. These films can yield optical results that are difficult or impossible to achieve with conventional multilayer optical designs. The materials and processes necessary to fabricate such films are amenable to large-scale manufacturing.

612 citations

Journal ArticleDOI
TL;DR: In this paper, the optical constants of graphene in the visible range can be estimated by means of a very simple procedure involving their consistence with universal optical conductivity and experimentally measured optical spectra, within the framework of Fresnel coefficients calculation.
Abstract: We show that the optical constants of graphene in the visible range can be estimated by means of a very simple procedure involving their consistence with universal optical conductivity and experimentally measured optical spectra, within the framework of Fresnel coefficients calculation. The obtained complex refractive index allows for accurate prediction of the optical behavior of graphene in the visible range, from the two-dimensional limit (single atomically thick graphene layer) to the bulk limit (graphite). Therefore, it may result very useful for quantitative optical analysis of graphene layers and graphitic structures in general.

565 citations

Journal ArticleDOI
TL;DR: The authors present a polarization reflectance model that uses the Fresnel reflection coefficients, which accurately predicts the magnitudes of polarization components of reflected light, and all the polarization-based methods presented follow from this model.
Abstract: The authors present a polarization reflectance model that uses the Fresnel reflection coefficients. This reflectance model accurately predicts the magnitudes of polarization components of reflected light, and all the polarization-based methods presented follow from this model. The authors demonstrate the capability of polarization-based methods to segment material surfaces according to varying levels of relative electrical conductivity, in particular distinguishing dielectrics, which are nonconducting, and metals, which are highly conductive. Polarization-based methods can provide cues for distinguishing different intensity-edge types arising from intrinsic light-dark or color variations, intensity edges caused by specularities, and intensity edges caused by occluding contours where the viewing direction becomes nearly orthogonal to surface normals. Analysis of reflected polarization components is also shown to enable the separation of diffuse and specular components of reflection, unobscuring intrinsic surface detail saturated by specular glare. Polarization-based methods used for constraining surface normals are discussed. >

450 citations

Journal ArticleDOI
TL;DR: In this paper, a theory of Fresnel images of plane periodic objects viewed in monochromatic light is presented, which is in agreement with the experimental and computer research available in the literature.
Abstract: A theory of Fresnel images is presented. Only the Fresnel images of plane periodic objects viewed in monochromatic light are considered. The theory is in agreement with the experimental and computer research available in the literature. Photographs of Fresnel images of gratings are shown to verify certain aspects of the theory.

444 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
89% related
Optical fiber
167K papers, 1.8M citations
88% related
Interferometry
58K papers, 824.8K citations
86% related
Plasmon
32.5K papers, 983.9K citations
85% related
Resonator
76.5K papers, 1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202249
202150
202071
2019116
2018106