Topic
Fretting
About: Fretting is a research topic. Over the lifetime, 5522 publications have been published within this topic receiving 92950 citations.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
TL;DR: In this article, the cyclic deformation and fatigue crack initiation in polycrystalline ductile solids was studied and a total-life approach was proposed to deal with the problem.
Abstract: Preface 1. Introduction and overview Part I. Cyclic Deformation and Fatigue Crack Initiation: 2. Cyclic deformation in ductile single crystals 3. Cyclic deformation in polycrystalline ductile solids 4. Fatigue crack initiation in ductile solids 5. Cyclic deformation and crack initiation in brittle solids 6. Cyclic deformation and crack initiation in noncrystalline solids Part II. Total-Life Approaches: 7. Stress-life approach 8. Strain-life approach Part III. Damage-Tolerant Approach: 9. Fracture mechanics and its implications for fatigue 10. Fatigue crack growth in ductile solids 11. Fatigue crack growth in brittle solids 12. Fatigue crack growth in noncrystalline solids Part IV. Advanced Topics: 13. Contact fatigue: sliding, rolling and fretting 14. Retardation and transients in fatigue crack growth 15. Small fatigue cracks 16. Environmental interactions: corrosion-fatigue and creep-fatigue Appendix References Indexes.
4,074 citations
Book•
[...]
01 Jan 2001
TL;DR: In this paper, the authors introduce the concept of Fatigue as a Phenomenon in the material and present an overview of the properties of materials and their properties under variable-amplitude loading.
Abstract: Preface. Frequently used symbols, acronyms and units. 1. Introduction to Fatigue of Structures and Materials. Part 1: Introductory Chapters on Fatigue. 2. Fatigue as a Phenomenon in the Material. 3. Stress Concentrations at Notches. 4. Residual Stresses. 5. Stress Intensity Factors of Cracks. 6. Fatigue Properties of Materials. 7. The Fatigue Strength of Notched Specimens. Analysis and Predictions. 8. Fatigue Crack Growth. Analysis and Predictions. Part 2: Load Spectra and Fatigue Under Variable-Amplitude Loading. 9. Load Spectra. 10. Fatigue under Variable-Amplitude Loading. 11. Fatigue Crack Growth under Variable-Amplitude Loading. Part 3: Fatigue Tests and Scatter. 12. Fatigue and Scatter. 13. Fatigue Tests. Part 4: Special Fatigue Conditions. 14. Surface Treatments. 15. Fretting Corrosion. 16. Corrosion Fatigue. 17. High-Temperature and Low-Temperature Fatigue. Part 5: Fatigue of Joints and Structures. 18. Fatigue of Joints. 19. Fatigue of Structures. Design Procedures. Part 6: Arall and Glare, Fiber-Metal Laminates. 20. The Fatigue Resistance of the Fiber-Metal Laminates Arall and Glare. Subject index.
1,271 citations
[...]
TL;DR: The following are described with regard to biomedical applications of titanium alloys: the Young's modulus, wear properties, notch fatigue strength, fatigue behaviour on relation to ageing treatment, and multifunctional deformation behaviours of Titanium alloys.
Abstract: Young's modulus as well as tensile strength, ductility, fatigue life, fretting fatigue life, wear properties, functionalities, etc., should be adjusted to levels that are suitable for structural biomaterials used in implants that replace hard tissue. These factors may be collectively referred to as mechanical biocompatibilities. In this paper, the following are described with regard to biomedical applications of titanium alloys: the Young's modulus, wear properties, notch fatigue strength, fatigue behaviour on relation to ageing treatment, improvement of fatigue strength, fatigue crack propagation resistance and ductility by the deformation-induced martensitic transformation of the unstable beta phase, and multifunctional deformation behaviours of titanium alloys.
888 citations
[...]
TL;DR: This review focuses on electrochemical corrosion phenomena in alloys used for orthopaedic implants, evidenced by particulate corrosion and wear products in tissue surrounding the implant, which may ultimately result in a cascade of events leading to periprosthetic bone loss.
Abstract: In situ degradation of metal-alloy implants is undesirable for two reasons: the degradation process may decrease the structural integrity of the implant, and the release of degradation products may elicit an adverse biological reaction in the host Degradation may result from electrochemical dissolution phenomena, wear, or a synergistic combination of the two Electrochemical processes may include generalized corrosion, uniformly affecting the entire surface of the implant, and localized corrosion, affecting either regions of the device that are shielded from the tissue fluids (crevice corrosion) or seemingly random sites on the surface (pitting corrosion) Electrochemical and mechanical processes (for example, stress corrosion cracking, corrosion fatigue, and fretting corrosion) may interact, causing premature structural failure and accelerated release of metal particles and ions
The clinical importance of degradation of metal implants is evidenced by particulate corrosion and wear products in tissue surrounding the implant, which may ultimately result in a cascade of events leading to periprosthetic bone loss Furthermore, many authors have reported increased concentrations of local and systemic trace metal in association with metal implants1,4,5,9-11,14,18,25,26,28,29,47,49-55,58,71,72,75-77,87,90,108-110 There also is a low but finite prevalence of corrosion-related fracture of the implant
This review focuses on electrochemical corrosion phenomena in alloys used for orthopaedic implants A summary of basic electrochemistry is followed by a discussion of retrieval studies of the response of the implant to the host environment and the response of local tissue to implant corrosion products The systemic implications of the release of metal particles also are presented Finally, future directions in biomaterials research and development …
838 citations
Book•
[...]
TL;DR: A new theory for wear of metals is considered in this article, which is based on the behavior of dislocations at the surface, sub-surface crack and void formation, and subsequent joining of cracks by shear deformation of the surface.
Abstract: A new theory for wear of metals is considered. The theory is based on the behavior of dislocations at the surface, sub-surface crack and void formation, and subsequent joining of cracks by shear deformation of the surface. The proposed theory predicts qualitatively that the wear particle shape is likely to be thin flake-like sheets and that the surface layer can undergo large plastic deformation. It also predicts a number of experimentally observed phenomena such as the difference in wear particle sizes and the dependence of fretting wear rate on displacement amplitude. All theoretical predictions are supported by experimental evidences. A wear equation is developed based on the proposed theory.
735 citations