scispace - formally typeset
Search or ask a question
Topic

Friction stir processing

About: Friction stir processing is a research topic. Over the lifetime, 2977 publications have been published within this topic receiving 62158 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a hard state (aged state) Cu-Cr-Zr alloy was subjected to one-step friction stir processing (FSP) at room temperature with more attentions paid to the evolution of grains and precipitates, and their effects on the mechanical and electrical properties.

25 citations

Journal ArticleDOI
TL;DR: In this paper, SiC particles 20μm in average size were incorporated into the commercially Alloy 6061-T6 to form particulate metal matrix composite produced by using Friction Stir Processing (FSP).
Abstract: In this experiment, SiC particles 20μm in average size were incorporated into the commercially Aluminum alloy 6061-T6 to form particulate metal matrix composite produced by using Friction Stir Processing (FSP). After the preparation of composite, the homogeneity of the particles distribution inside Al matrix has been observed by optical microscope (OM) and scanning electron microscope (SEM). Dry sliding wear test was conducted by using pin on disk equipment and Static immersion corrosion (SIC) resistance was evaluated in 3.5% NaCl aqueous solution at various regimes. From the results, it observed that the SiC particles are well distributed homogenously inside the nugget zone without any defects, obtained good bonding between the SiC particles and Al matrix alloy. The micro hardness of nugget zone with SiC particles is more compare to the as-received Al alloy due to the dispersion of SiC particles. It found that, exhibited superior dry sliding wear resistance and significant improvement SIC resistance of FSPed Aluminum alloy 6061-T6/SiCp composite is compare with as-received Al alloy. KeywordsFriction stir processing, Aluminum alloy 6061-T6, SiC particles, Micro hardness, Dry sliding wear resistance, Static immersion corrosion

25 citations

Journal ArticleDOI
TL;DR: In this article, an ultrafine-grained microstructure of a QE22 alloy prepared by Friction Stir Processing (FSP) is isochronally annealed to study the thermal stability and grain growth kinetics.
Abstract: Ultrafine-grained microstructure of a QE22 alloy prepared by Friction Stir processing (FSP) is isochronally annealed to study the thermal stability and grain growth kinetics. The FSPed microstructure of QE22 alloy is thermally stable under ultrafine-grained regime up to 300 °C and the activation energy required for grain growth is found to be exceptionally high as compared to conventional ultrafine-grained magnesium alloys. The high thermal stability and activation energy of the FSPed QE22 alloy is due to Zener pinning effect from thermally stable eutectic Mg12Nd and fine precipitates Mg12Nd2Ag and solute drag effect from segregation of Neodymium (Nd) solute atoms at grain boundaries.

25 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of friction stir processing (FSP) parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated and a mathematical formulation was derived to calculate the wear volume loss of the composites.
Abstract: Effects of friction stir processing (FSP) parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated A mathematical formulation was derived to calculate the wear volume loss of the composites The experimental results were contrasted with the results of the proposed model The influences of sliding distance, tool traverse and rotational speeds, as well as graphite (Gr) and titanium carbide (TiC) volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance, tool traverse speed, and rotational speed; while the wear volume loss decreased with increasing volume fraction of the reinforcements A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiC + 50% Al2O3 because of improved lubricant ability, as well as resistance to brittleness and wear New possibilities to develop wear-resistant aluminum-based composites for different industrial applications were proposed

25 citations

Journal ArticleDOI
TL;DR: In this article, four-pass FSP was applied on aluminum alloy 7075 (AA7075-O) with and without the addition of alumina nanoparticles (Al2O3) of average size ~40nm.
Abstract: Friction stir processing (FSP) is a recent surface engineering processing technique that is gaining wide recognition for manufacturing nanodispersed surface composites, which are of high specific strength, hardness and resistance to wear and corrosion. Herein, four-pass FSP was applied on aluminum alloy 7075 (AA7075-O) with and without the addition of alumina nanoparticles (Al2O3) of average size ~40 nm. All FSP parameters were constant at 40 mm/min transverse speed, 500 rpm and tilt angle of 3°. FSP rotation direction was reversed every other pass. The friction stir-processed materials were sectioned and solution treated at 515 °C for 1.5 h, followed by age hardening at 120 °C for 12, 24, 36, 48 and 60 h. The effect of heat treatment regimes on microstructure, hardness and toughness was examined, as well as the fracture mode. The new friction stir-processed surfaces without and with nanodispersion showed enhancement in the hardness of the surface of the AA7075-O material (65 HV) to almost a double (100 and 140 HV) after four-pass FSP (before heat treatment) without and with incorporating nanoalumina particles, respectively. After 48-h aging at 120 °C, a significant enhancement in impact toughness was achieved for both the friction stir-processed without and with nanodispersion (181 and 134 J, respectively), compared to the reference material AA7075 in T6 condition (104 J).

25 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
88% related
Alloy
171.8K papers, 1.7M citations
86% related
Grain boundary
70.1K papers, 1.5M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
82% related
Coating
379.8K papers, 3.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023236
2022443
2021356
2020322
2019349
2018261