scispace - formally typeset
Search or ask a question
Topic

Friction stir processing

About: Friction stir processing is a research topic. Over the lifetime, 2977 publications have been published within this topic receiving 62158 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the current understanding and development of friction-stir welding and processing of Ti-6Al-4V alloy are briefly reviewed, focusing on microstructural aspects and microstructure-properties relationship.

124 citations

Journal ArticleDOI
TL;DR: This work presents a strong and ductile non-equiatomic HEA obtained after friction stir processing (FSP), which results in synergistic strengthening via TRIP, grain boundary strengthening, and effective strain partitioning between the γ and ε phases during deformation, thus leading to enhanced strength and ductility of the TRIP-assisted dual-phase HEA engineered via FSP.
Abstract: The potential of high-entropy alloys (HEAs) to exhibit an extraordinary combination of properties by shifting the compositional regime from the corners towards the centers of phase diagrams has led to worldwide attention by material scientists. Here we present a strong and ductile non-equiatomic HEA obtained after friction stir processing (FSP). A transformation-induced plasticity (TRIP) assisted HEA with composition Fe50Mn30Co10Cr10 (at.%) was severely deformed by FSP and evaluated for its microstructure-mechanical property relationship. The FSP-engineered microstructure of the TRIP HEA exhibited a substantially smaller grain size, and optimized fractions of face-centered cubic (f.c.c., γ) and hexagonal close-packed (h.c.p., e) phases, as compared to the as-homogenized reference material. This results in synergistic strengthening via TRIP, grain boundary strengthening, and effective strain partitioning between the γ and e phases during deformation, thus leading to enhanced strength and ductility of the TRIP-assisted dual-phase HEA engineered via FSP.

124 citations

Journal ArticleDOI
30 Jul 2013-Wear
TL;DR: In this paper, a new processing technique, friction stir processing (FSP), was used to incorporate SiC and MoS 2 particles into the matrix of an A356 Al alloy to form surface hybrid composite.

123 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the studies of FSP in the modification of the cast structure, superplastic deformation behavior, preparation of fine-grained Mg alloys and Mg-based surface composites, and additive manufacturing is presented.
Abstract: Magnesium (Mg) alloys have been extensively used in various fields, such as aerospace, automobile, electronics, and biomedical industries, due to their high specific strength and stiffness, excellent vibration absorption, electromagnetic shielding effect, good machinability, and recyclability. Friction stir processing (FSP) is a severe plastic deformation technique, based on the principle of friction stir welding. In addition to introducing the basic principle and advantages of FSP, this paper reviews the studies of FSP in the modification of the cast structure, superplastic deformation behavior, preparation of fine-grained Mg alloys and Mg-based surface composites, and additive manufacturing. FSP not only refines, homogenizes, and densifies the microstructure, but also eliminates the cast microstructure defects, breaks up the brittle and network-like phases, and prepares fine-grained, ultrafine-, and nano-grained Mg alloys. Indeed, FSP significantly improves the comprehensive mechanical properties of the alloys and achieves low-temperature and/or high strain rate superplasticity. Furthermore, FSP can produce particle- and fiber-reinforced Mg-based surface composites. As a promising additive manufacturing technique of light metals, FSP enables the additive manufacturing of Mg alloys. Finally, we prospect the future research direction and application with friction stir processed Mg alloys.

123 citations

Journal ArticleDOI
TL;DR: In this modern competitive world demand has been increased towards the development for lighter, energy efficient materials as mentioned in this paper and aluminium metal matrix composite has been the best suited materials for research in this direction.

123 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
88% related
Alloy
171.8K papers, 1.7M citations
86% related
Grain boundary
70.1K papers, 1.5M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
82% related
Coating
379.8K papers, 3.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023236
2022443
2021356
2020322
2019349
2018261