scispace - formally typeset
Search or ask a question
Topic

Full configuration interaction

About: Full configuration interaction is a research topic. Over the lifetime, 1081 publications have been published within this topic receiving 61024 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new augmented version of coupled-cluster theory, denoted as CCSD(T), is proposed to remedy some of the deficiencies of previous augmented coupledcluster models.

7,249 citations

Journal ArticleDOI
TL;DR: The coupled cluster singles and doubles model (CCSD) as discussed by the authors is derived algebraically, presenting the full set of equations for a general reference function explicitly in spin-orbital form, and the computational implementation of the CCSD model, which involves cubic and quartic terms, is discussed and results are compared with full CI calculations for H2O and BeH2.
Abstract: The coupled‐cluster singles and doubles model (CCSD) is derived algebraically, presenting the full set of equations for a general reference function explicitly in spin–orbital form. The computational implementation of the CCSD model, which involves cubic and quartic terms, is discussed and results are reported and compared with full CI calculations for H2O and BeH2. We demonstrate that the CCSD exponential ansatz sums higher‐order correlation effects efficiently even for BeH2, near its transition state geometry where quasidegeneracy efforts are quite large, recovering 98% of the full CI correlation energy. For H2O, CCSD plus the fourth‐order triple excitation correction agrees with the full CI energy to 0.5 kcal/mol. Comparisons with low‐order models provide estimates of the effect of the higher‐order terms T1T2, T21T2, T31, and T41 on the correlation energy.

5,603 citations

Journal ArticleDOI
TL;DR: In this article, a general procedure for calculation of the electron correlation energy, starting from a single Hartree-Fock determinant, is introduced, and the relation of this method to coupled-cluster (CCSD) theory is discussed.
Abstract: A general procedure is introduced for calculation of the electron correlation energy, starting from a single Hartree–Fock determinant. The normal equations of (linear) configuration interaction theory are modified by introducing new terms which are quadratic in the configuration coefficients and which ensure size consistency in the resulting total energy. When used in the truncated configuration space of single and double substitutions, the method, termed QCISD, leads to a tractable set of quadratic equations. The relation of this method to coupled‐cluster (CCSD) theory is discussed. A simplified method of adding corrections for triple substitutions is outlined, leading to a method termed QCISD(T). Both of these new procedures are tested (and compared with other procedures) by application to some small systems for which full configuration interaction results are available.

4,194 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the equation of motion coupled-cluster (EOM•CC) method and its application to molecular systems is presented by exploiting the biorthogonal nature of the theory, it is shown that excited state properties and transition strengths can be evaluated via a generalized expectation value approach that incorporates both the bra and ket state wave functions.
Abstract: A comprehensive overview of the equation of motion coupled‐cluster (EOM‐CC) method and its application to molecular systems is presented. By exploiting the biorthogonal nature of the theory, it is shown that excited state properties and transition strengths can be evaluated via a generalized expectation value approach that incorporates both the bra and ket state wave functions. Reduced density matrices defined by this procedure are given by closed form expressions. For the root of the EOM‐CC effective Hamiltonian that corresponds to the ground state, the resulting equations are equivalent to the usual expressions for normal single‐reference CC density matrices. Thus, the method described in this paper provides a universal definition of coupled‐cluster density matrices, providing a link between EOM‐CC and traditional ground state CC theory.Excitation energy,oscillator strength, and property calculations are illustrated by means of several numerical examples, including comparisons with full configuration interaction calculations and a detailed study of the ten lowest electronically excited states of the cyclic isomer of C4.

2,171 citations

Journal ArticleDOI
TL;DR: In this paper, a noniterative triples correction to the coupled-cluster singles and doubles (CCSD), method, for general single determinant reference functions is proposed and investigated numerically for various cases, including non-Hartree-Fock (non-HF) reference functions.
Abstract: A new, noniterative triples correction to the coupled‐cluster singles and doubles (CCSD), method, for general single determinant reference functions is proposed and investigated numerically for various cases, including non‐Hartree–Fock (non‐HF) reference functions. It is correct through fourth‐order of perturbation theory for non‐HF references, and unlike other such methods, retains the usual invariance properties common to CC methods, while requiring only a single N7 step. In the canonical Hartree–Fock case, the method is equivalent to the usual CCSD(T) method, but now permits the use of restricted open‐shell Hartree‐Fock (ROHF) and quasirestricted Hartree–Fock (QRHF) reference determinants, along with many others. Comparisons with full configuration interaction (FCI) results are presented for CH2, CH2+, CH3, NH2, and SiH2. The paper also reports the derivation and initial computational implementation of analytical gradients for the ROHF‐CCSD(T) method, which includes unrestricted Hartree–Fock (UHF) CCSD...

1,812 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
89% related
Ground state
70K papers, 1.5M citations
82% related
Excited state
102.2K papers, 2.2M citations
82% related
Density functional theory
66.1K papers, 2.1M citations
81% related
Electronic structure
43.9K papers, 1.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202312
202222
202151
202056
201949
201837