scispace - formally typeset
Search or ask a question
Topic

Fullerene

About: Fullerene is a research topic. Over the lifetime, 12723 publications have been published within this topic receiving 359173 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The observation of an all-boron fullerene-like cage cluster at B40(-) with an extremely low electron-binding energy is reported, by photoelectron spectroscopy, and theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40 (-) with two adjacent hexagonal holes is slightly more stable than the fullerenes structure.
Abstract: Main-group analogues to fullerene-C60 have been predicted theoretically many times. Now, B40− has been observed using photoelectron spectroscopy and, with its neutral analogue, B40, confirmed computationally. In contrast to fullerene-C60, the all-boron fullerene (or borospherene) features triangles, hexagons and heptagons, bonded uniformly by delocalized σ and π bonds over the cage surface.

679 citations

Journal ArticleDOI
TL;DR: In this article, the vertical phase separation of spin-coated poly(3-hexylthiophene) (P3HT):fullerene derivative blends was investigated using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).
Abstract: A method which enables the investigation of the buried interfaces without altering the properties of the polymer films is used to study vertical phase separation of spin-coated poly(3-hexylthiophene) (P3HT):fullerene derivative blends. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis reveals the P3HT enrichment at the free (air) surfaces and abundance of fullerene derivatives at the organic/substrate interfaces. The vertical phase separation is attributed to the surface energy difference of the components and their interactions with the substrates. This inhomogeneous distribution of the donor and acceptor components significantly affects photovoltaic device performance and makes the inverted device structure a promising choice.

676 citations

Journal ArticleDOI
07 Sep 2000-Nature
TL;DR: It is shown that the cage-structured fullerene C20 can be produced from its perhydrogenated form (dodecahedrane C20H 20) by replacing the hydrogen atoms with relatively weakly bound bromine atoms, followed by gas-phase debromination.
Abstract: Fullerenes are graphitic cage structures incorporating exactly twelve pentagons. The smallest possible fullerene is thus C20, which consists solely of pentagons. But the extreme curvature and reactivity of this structure have led to doubts about its existence and stability. Although theoretical calculations have identified, besides this cage, a bowl and a monocyclic ring isomer as low-energy members of the C20 cluster family, only ring isomers of C20 have been observed so far. Here we show that the cage-structured fullerene C20 can be produced from its perhydrogenated form (dodecahedrane C20H20) by replacing the hydrogen atoms with relatively weakly bound bromine atoms, followed by gas-phase debromination. For comparison we have also produced the bowl isomer of C20 using the same procedure. We characterize the generated C20 clusters using mass-selective anion photoelectron spectroscopy; the observed electron affinities and vibrational structures of these two C20 isomers differ significantly from each other, as well as from those of the known monocyclic isomer. We expect that these unique C20 species will serve as a benchmark test for further theoretical studies.

676 citations

Journal ArticleDOI
TL;DR: In this article, a method to grow carbon microtubules with fullerene structure (buckytubes) has been identified, which consists of the catalytic decomposition of acetylene over iron particles at 700 °C.
Abstract: A method to grow carbon microtubules with fullerene structure (buckytubes) has been identified. The method consists of the catalytic decomposition of acetylene over iron particles at 700 °C. Carbon microtubules of up to 50 μm in length are synthesized by this method. Electron diffraction and high resolution electron microscopy studies demonstrate that the structure of these microtubules corresponds to the helical structure recently reported by S. Iijima, Nature 354, 56(1991), prepared using an arc‐discharge evaporation method.

672 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Oxide
213.4K papers, 3.6M citations
89% related
Graphene
144.5K papers, 4.9M citations
89% related
Nanoparticle
85.9K papers, 2.6M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023542
20221,244
2021366
2020346
2019411
2018420