scispace - formally typeset
Search or ask a question
Topic

Fundamental frequency

About: Fundamental frequency is a research topic. Over the lifetime, 8941 publications have been published within this topic receiving 131583 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A NMF-like algorithm is derived that performs similarly to supervised NMF using pre-trained piano spectra but improves pitch estimation performance by 6% to 10% compared to alternative unsupervised NMF algorithms.
Abstract: Multiple pitch estimation consists of estimating the fundamental frequencies and saliences of pitched sounds over short time frames of an audio signal. This task forms the basis of several applications in the particular context of musical audio. One approach is to decompose the short-term magnitude spectrum of the signal into a sum of basis spectra representing individual pitches scaled by time-varying amplitudes, using algorithms such as nonnegative matrix factorization (NMF). Prior training of the basis spectra is often infeasible due to the wide range of possible musical instruments. Appropriate spectra must then be adaptively estimated from the data, which may result in limited performance due to overfitting issues. In this paper, we model each basis spectrum as a weighted sum of narrowband spectra representing a few adjacent harmonic partials, thus enforcing harmonicity and spectral smoothness while adapting the spectral envelope to each instrument. We derive a NMF-like algorithm to estimate the model parameters and evaluate it on a database of piano recordings, considering several choices for the narrowband spectra. The proposed algorithm performs similarly to supervised NMF using pre-trained piano spectra but improves pitch estimation performance by 6% to 10% compared to alternative unsupervised NMF algorithms.

271 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical method is developed to investigate vibration characteristics of initially stressed functionally graded rectangular plates made up of metal and ceramic in thermal environment, where material properties are assumed to be temperature dependent, and vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents.

270 citations

Journal ArticleDOI
TL;DR: The obtained experimental results show that the proposed adaptive SRF-PLL highly rejects the undesired harmonics even if the fundamental harmonic frequency of a highly polluted grid voltage abruptly varies.
Abstract: The proper operation of grid-connected power electronics converters needs using a synchronization technique to estimate the phase of the grid voltage. The performance of this synchronization technique is related to the quality of the consumed or delivered electric power. The synchronous-reference-frame phase-locked loop (SRF-PLL) has been widely used due to its ease of operation and robust behavior. However, the estimated phase can have a considerable amount of unwanted ripple if the grid voltage disturbances are not properly rejected. The aim of this paper is to propose an adaptive SRF-PLL which strongly rejects these disturbances even if the fundamental frequency of the grid voltage varies. This is accomplished by using several adaptive infinite-impulse-response notch filters, implemented by means of an inherently stable Schur-lattice structure. This structure is perfectly suited to be programmed in fixed-point DSPs (i.e., it has high mapping precision, low roundoff accumulation, and suppression of quantization limit cycle oscillations). The proposed adaptive SRF-PLL has been tested by means of the TI TMS320F2812 DSP. The obtained experimental results show that the proposed synchronization method highly rejects the undesired harmonics even if the fundamental harmonic frequency of a highly polluted grid voltage abruptly varies.

268 citations

Journal ArticleDOI
TL;DR: In this paper, a third-order theory has been developed to study capillary instability of a liquid jet, and it has been shown that the asymmetrical development of an initially sinusoidal wave is a nonlinear effect with generation of higher harmonics as well as feedback into the fundamental.
Abstract: A third-order theory has been developed to study capillary instability of a liquid jet. The result shows that the asymmetrical development of an initially sinusoidal wave is a non-linear effect with generation of higher harmonics as well as feedback into the fundamental. The growth of the surface wave is found to depend explicitly on the dimensionless initial amplitude of the disturbance and the dimensionless wave-number k of the wave. For the same initial disturbance, the wave is found to have a maximum growth rate at k = 0·7 in agreement with the linearized theory. For the same wave-number, the growth is proportional to the initial amplitude of the disturbance. The cut-off wave-number and the fundamental frequency (or growth rate for the unstable case) of the wave for a given k are found to be different from the linearized theory. Furthermore, at the cut-off wave-number, the present theory shows the disturbance experiences a growth which is proportional to t2. The excellent agreement between Donnelly & Glaberson's experiment and Rayleigh's linearized theory is found to be due to their method of measurement.

265 citations

Journal ArticleDOI
TL;DR: A regulation strategy capable of controlling the energy stored in the modular multilevel converter (MMC) in an HVDC configuration by regulating the positive, negative, and zero sequences in dqo coordinates of the differential current using two rotating reference frames.
Abstract: This paper consists of the presentation of a regulation strategy capable of controlling the energy stored in the modular multilevel converter (MMC) in an HVDC configuration. This is achieved by regulating the positive, negative, and zero sequences in dqo coordinates of the differential current using two rotating reference frames: at once and at twice the fundamental grid frequency value. The active and reactive negative sequence components of the differential current at twice the fundamental frequency are used to eliminate the oscillations of the three-phased leg energy, reducing significantly the capacitor voltage oscillations, while the zero-sequence component is used to regulate the total energy stored at a given reference. Meanwhile, active and reactive positive sequence components of the circulating current are used for eliminating the average energy difference between the upper and lower arms in a three-phase MMC. In order to decouple efficiently the differential current components, the decoupled-double-synchronous-reference-frame current control strategy is used. Finally, simulation results validate the performance of the MMC in an HVDC configuration with the proposed control. Control equations are demonstrated, and cross-coupled leg-energy terms are introduced.

261 citations


Network Information
Related Topics (5)
Noise
110.4K papers, 1.3M citations
82% related
Vibration
80K papers, 849.3K citations
79% related
Signal processing
73.4K papers, 983.5K citations
76% related
Filter (signal processing)
81.4K papers, 1M citations
74% related
Wave propagation
55K papers, 1.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
2022101
2021236
2020335
2019421
2018375