scispace - formally typeset
Search or ask a question
Topic

Fundamental frequency

About: Fundamental frequency is a research topic. Over the lifetime, 8941 publications have been published within this topic receiving 131583 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The article provides deeper and more accurate analysis than can be found in the literature, including the memory complexity, on the generalization of the Goertzel algorithm, which allows it to be used for frequencies which are not integer multiples of the fundamental frequency.
Abstract: The article deals with the Goertzel algorithm, used to establish the modulus and phase of harmonic components of a signal. The advantages of the Goertzel approach over the DFT and the FFT in cases of a few harmonics of interest are highlighted, with the article providing deeper and more accurate analysis than can be found in the literature, including the memory complexity. But the main emphasis is placed on the generalization of the Goertzel algorithm, which allows us to use it also for frequencies which are not integer multiples of the fundamental frequency. Such an algorithm is derived at the cost of negligibly increasing the computational and memory complexity.

81 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental natural frequency of non-uniform beams with non-homogeneous material density and elastic modulus along their axis has been studied under various boundary conditions.

81 citations

Journal ArticleDOI
TL;DR: A modified unitary pitch model was able to account for the dependence of f0 DLs on harmonic number, although this correct behavior was not based on peripheral harmonic resolvability.
Abstract: Fundamental frequency (f0) difference limens (DLs) were measured as a function of f0 for sine- and random-phase harmonic complexes, bandpass filtered with 3-dB cutoff frequencies of 2.5 and 3.5 kHz (low region) or 5 and 7 kHz (high region), and presented at an average 15 dB sensation level (approximately 48 dB SPL) per component in a wideband background noise. Fundamental frequencies ranged from 50 to 300 Hz and 100 to 600 Hz in the low and high spectral regions, respectively. In each spectral region, f0 DLs improved dramatically with increasing f0 as approximately the tenth harmonic appeared in the passband. Generally, f0 DLs for complexes with similar harmonic numbers were similar in the two spectral regions. The dependence of f0 discrimination on harmonic number presents a significant challenge to autocorrelation (AC) models of pitch, in which predictions generally depend more on spectral region than harmonic number. A modification involving a “lag window”is proposed and tested, restricting the AC repr...

81 citations

Journal ArticleDOI
TL;DR: In this article, the dependence of the dc self-bias generated by the EAE on the choice of the voltage amplitudes was investigated experimentally as well as by using an analytical model and a particle-in-cell simulation.
Abstract: An electrical asymmetry in capacitive rf discharges with a symmetrical electrode configuration can be induced by driving the discharge with a fundamental frequency and its second harmonic. For equal amplitudes of the applied voltage waveforms, it has been demonstrated by modeling, simulation, and experiments that this electrical asymmetry effect (EAE) leads to the generation of a variable dc self-bias that depends almost linearly on the phase angle between the driving voltage signals. Here, the dependence of the dc self-bias generated by the EAE on the choice of the voltage amplitudes, i.e., the ratio A of high to low frequency amplitude, is investigated experimentally as well as by using an analytical model and a particle-in-cell simulation. It is found that (i) the strongest electrical asymmetry is induced for A<1 at pressures ranging from 6 to 100 Pa and that (ii) around this optimum voltage ratio the dc self-bias normalized to the sum of both voltage amplitudes is fairly insensitive to changes of A. T...

81 citations

Journal ArticleDOI
TL;DR: In this article, a new seismic isolation system called a periodic foundation (PF) where inclusions are periodically arranged is introduced, which is different from traditional base isolation in that it causes a fundamental frequency shift in the structure, thus reducing its response and generating a frequency gap.
Abstract: This paper introduces a new seismic isolation system called a periodic foundation (PF), where inclusions are periodically arranged. The PF is different from traditional base isolation in that it causes a fundamental frequency shift in the structure, thus reducing its response and generating a frequency gap. If the frequency contents of a seismic wave fall into the gap, it can not propagate in the foundation. Thus, it will exert no influence on the structure above. A systematic study of the band of frequency gap for a 2D PF is conducted. The influence of physical and geometrical parameters such as density and elastic modulus as well as filling fraction of the PF and its materials on the band of frequency gap are investigated, and a design with a frequency gap as low as 2.49–3.72 Hz is achieved. This band of frequency gap corresponds well to the design spectra in earthquake engineering. Numerical simulations of a six-story frame structure with different foundations demonstrate that a proposed PF can greatly reduce the seismic response of an isolated structure. This investigation shows that PFs have great potential in future applications of seismic isolation technology.

81 citations


Network Information
Related Topics (5)
Noise
110.4K papers, 1.3M citations
82% related
Vibration
80K papers, 849.3K citations
79% related
Signal processing
73.4K papers, 983.5K citations
76% related
Filter (signal processing)
81.4K papers, 1M citations
74% related
Wave propagation
55K papers, 1.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
2022101
2021236
2020335
2019421
2018375