scispace - formally typeset
Search or ask a question
Topic

Fusarium incarnatum

About: Fusarium incarnatum is a research topic. Over the lifetime, 82 publications have been published within this topic receiving 4642 citations.


Papers
More filters
Book
20 Jun 2006
TL;DR: This chapter discusses techniques for Growing and Identifying Fusarium, and concludes with a discussion of the importance of knowing the carrier and removal status of canine coronavirus in the context of fusarium establishment.
Abstract: Foreword Preface 1. Introduction Techniques and Methods 2. Media - Recipes and Preparation 2.1 Media for Growing and Identifying Fusarium 2.2 Supplementary Identification Media 2.3 Media for Isolating Fusarium 2.4 Media for the Preparation of Natural Inocula 2.5 Synthetic and Semi-synthetic Media 2.6 Media for Sexual Crosses 2.7 Sterilization of Media and Materials 3. Techniques for Recovering Fusarium 3.1 Collecting strategy(ies) 3.2 Isolation Techniques - Plants 3.3 Isolation Techniques - Soil 3.4 Isolation Techniques - Spore Trapping and Air Sampling 3.5 Seed Disinfestation 4. Techniques for Growing and Maintaining Fusarium 4.1 Vegetative Propagation 4.2 Preparing Cultures for Identification 4.3 Single Spore Subcultures 4.4 Mutagenesis 4.5 Culture Preservation 5. Vegetative Compatibility Groups (VCGs) 5.1 History of and Genetic Basis Underlying Vegetative Compatibility 5.2 Overall Strategy for Determining if Strains are Vegetatively Compatible 5.3 Recovering and Identifying nit Mutants 5.4 Typical Pairing Protocols 5.5 Common Trouble Spots - HSI, crn, and NitMs 5.6 Characterizing a Population with VCGs 6. Fertility Concepts 6.1 Heterothallic, Homothallic and Pseudohomothallic 6.2 Mating Type 6.3 Population Effects of Mating Type 6.4 Male, Female, and Hermaphrodite 6.5 Crossing Protocols 6.6 Developing Female-Fertile Tester Strains 6.7 Species Identification Through Sexual Crosses 7. Nucleic Acid Analyses 7.1 DNA Extraction and Purification 7.2 PCR - Mating-Type Alleles 7.3 Amplified Fragment Length Polymorphisms (AFLPs) 7.4 Sequence Analysis and Sequenced Loci 7.5 Genetic Maps Taxonomy and Identification of Fusarium 8. A Brief History of Fusarium Taxonomy 9. Species Concepts in Fusarium 9.1 Generic Problems in Speciation in Fusarium 9.2 Morphological Species Concepts 9.3 Biological Species Concepts 9.4 Phylogenetic Species Concepts 9.5 How Many Strains Make a Species? 9.6 Species Names 9.7 Subspecific Terminology 9.8 A Species Concept for Fusarium 10. Teleomorphs of Fusarium 10.1 Taxonomy of Teleomorphs 10.2 General Teleomorph Characters 10.3 Sexual Development and Differentiation 10.4 Spore Killer 10.5 Anamorph-Teleomorph Connections 11. Practical Approaches to Identification 11.1 Overall Identification Strategy 11.2 The Diseased Plant and Its Geographic Origin 11.3 Native and Agricultural Populations 11.4 Culture Preparation 11.5 The Essence of Morphological Identifications 11.6 Beyond Morphology - Sexual Cross Fertility 11.7 Beyond Morphology - Molecular Diagnostics 11.8 The Special Case of Fusarium oxysporum 11.9 Differences Between Temperate and Tropical Regions 11.10 Conclusions Species Descriptions 12. Morphological Characters 12.1 Macroconidia 12.2 Microconidia 12.3 Chlamydospores 12.4 Other Characters 12.5 Secondary Characters 13. Species Descriptions F. acuminatum F. acutatum F. andiyazi F. anthophilum F. armeniacum F. avenaceum F. aywerte F. babinda F. begoniae F. beomiforme F. brevicatenulatum F. bulbicola F. camptoceras F. chlamydosporum F. circinatum F. compactum F. concentricum F. crookwellense (F. cerealis) F. culmorum F. decemcellulare F. denticulatum F. dimerum F. dlamini F. equiseti F. foetens F. fujikuroi F. globosum F. graminearum F. guttiforme F. heterosporum F. hostae F. konzum F. lactis F. lateritium F. longipes F. mangiferae F. merismoides F. miscanthi F. musarum F. napiforme F. nelsonii F. nisikadoi F. nurragi F. nygamai F. oxysporum F. phyllophilum F. poae F. polyphialidicum F. proliferatum F. pseudoanthophilum F. pseudocircinatum F. pseudograminearum F. pseudonygamai F. ramigenum F. redolens F. sacchari F. sambucinum F. scirpi F. semitectum (F. incarnatum) F. solani F. sporotrichioides F. sterilihyphosum F. subglutinans F. succisae F. thapsinum F. torulosum F. tricinctum F. udum F. venenatum F. verticillioides References Index

3,371 citations

Journal ArticleDOI
TL;DR: FUSARIUM-ID v. 1.0, a publicly available database of partial translation elongation factor 1-alpha (TEF) DNA sequences, presently representing a selected sample of the diversity of the genus diversity, with excellent representation of Type-B trichothecene toxin producers, and the Gibberella fujikuroi, Fusarium oxysporum and F. solani species complexes.
Abstract: One of the greatest impediments to the study of Fusarium has been the incorrect and confused application of species names to toxigenic and pathogenic isolates, owing in large part to intrinsic limitations of morphological species recognition and its application. To address this problem, we have created FUSARIUM-ID v. 1.0, a publicly available database of partial translation elongation factor 1-alpha (TEF) DNA sequences, presently representing a selected sample of the diversity of the genus diversity, with excellent representation of Type-B trichothecene toxin producers, and the Gibberella fujikuroi, Fusarium oxysporum and F. solani species complexes. Users can generate sequences using primers that are conserved across the genus, and use the sequence as a query to BLAST the database, which can be accessed at http://fusarium.cbio.psu.edu, or in a phylogenetic analysis. Correct identification of a known species in these groups often can be performed using this gene region alone. This growing database will contain only vouchered sequences attached to publicly available cultures. In the future, FUSARIUM-ID will be expanded to include additional sequences, including multiple sequences from the same species, sequences from new and revised species, and information from additional genes.

938 citations

Journal ArticleDOI
TL;DR: The multilocus haplotype nomenclature adopted in a previous study was expanded to all of the species within the FIESC and FCSC to provide the first DNA sequence-based typing schemes for these fusaria, thereby facilitating future epidemiological investigations.
Abstract: Species limits within the clinically important Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes (FIESC and FCSC, respectively) were investigated using multilocus DNA sequence data. Maximum-parsimony and maximum-likelihood analyses of aligned DNA sequences from four loci resolved 28 species within the FIESC, within which the species were evenly divided among two clades designated Incarnatum and Equiseti, and four species within the FCSC. Sequence data from a fifth locus, beta-tubulin, was excluded from the study due to the presence of highly divergent paralogs or xenologs. The multilocus haplotype nomenclature adopted in a previous study (K. O'Donnell, D. A. Sutton, A. Fothergill, D. McCarthy, M. G. Rinaldi, M. E. Brandt, N. Zhang, and D. M. Geiser, J. Clin. Microbiol. 46:2477-2490, 2008) was expanded to all of the species within the FIESC and FCSC to provide the first DNA sequence-based typing schemes for these fusaria, thereby facilitating future epidemiological investigations. Multilocus DNA typing identified sixty-two sequence types (STs) among 88 FIESC isolates and 20 STs among 26 FCSC isolates. This result corresponds to indices of discrimination of 0.985 and 0.966, respectively, for the FIESC and FCSC four-locus typing scheme using Simpson's index of discrimination. Lastly, four human and two veterinary isolates, received as members of the FIESC or FCSC, were resolved as five phylogenetically distinct species nested outside these species complexes. To our knowledge, these five species heretofore have not been reported to cause mycotic infections (i.e., F. armeniacum, F. brachygibbosum, F. flocciferum, and two unnamed Fusarium species within the F. tricinctum species complex).

225 citations

Journal ArticleDOI
TL;DR: Fusarium incarnatum was isolated from gill lesions of cultured black tiger shrimp, Penaeus monodon, in every crop during 2000-2002 in Nghe An province, Vietnam and its pathogenicity determined.
Abstract: Fusarium incarnatum was isolated from gill lesions of cultured black tiger shrimp, Penaeus monodon, in every crop during 2000-2002 in Nghe An province, Vietnam. Infected shrimps showed typical signs of black gill disease and mortalities about a month prior to harvest. Detailed morphological examinations, as well as molecular phylogenic analyses based on partial nucleotide sequences of ribosomal DNA, were made on the isolates. An artificial infection of kuruma prawn, Penaeus japonicus, using two selected isolates was also conducted and their pathogenicity determined.

72 citations

Journal ArticleDOI
TL;DR: Forty-eight Fusarium isolates morphologically identified as belonging to seven species of clinical interest were characterized molecularly by the analysis of the sequences of the TUB region of the β-tubulin gene, showing a high degree of correlation between the morphological and molecular identification.
Abstract: Forty-eight Fusarium isolates morphologically identified as belonging to seven species of clinical interest (i.e., Fusarium chlamydosporum, Fusarium dimerum, Fusarium incarnatum, Fusarium napiforme, Fusarium nygamai, Fusarium proliferatum, and Fusarium sacchari) were characterized molecularly by the analysis of the sequences of the TUB region of the β-tubulin gene. F. chlamydosporum and F. dimerum were the most genetically heterogeneous species. A high degree of correlation between the morphological and molecular identification was shown among the isolates studied. A table with the key morphological features for the identification of these Fusarium species is provided. The antifungal susceptibilities of the Fusarium isolates to 11 antifungal drugs were tested; terbinafine was the most active drug against all the species tested with the exception of F. incarnatum, for which amphotericin B was the most active.

53 citations


Network Information
Related Topics (5)
Aspergillus flavus
5.9K papers, 124.4K citations
78% related
Fusarium
7K papers, 164.9K citations
76% related
Root rot
7K papers, 83K citations
75% related
Mycelium
8.9K papers, 170.9K citations
75% related
Fusarium oxysporum
11.4K papers, 225K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20218
20208
201910
20184
20177
20169