scispace - formally typeset
Search or ask a question
Topic

Fuzzy clustering

About: Fuzzy clustering is a research topic. Over the lifetime, 23230 publications have been published within this topic receiving 601269 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A Monte Carlo evaluation of 30 procedures for determining the number of clusters was conducted on artificial data sets which contained either 2, 3, 4, or 5 distinct nonoverlapping clusters to provide a variety of clustering solutions.
Abstract: A Monte Carlo evaluation of 30 procedures for determining the number of clusters was conducted on artificial data sets which contained either 2, 3, 4, or 5 distinct nonoverlapping clusters. To provide a variety of clustering solutions, the data sets were analyzed by four hierarchical clustering methods. External criterion measures indicated excellent recovery of the true cluster structure by the methods at the correct hierarchy level. Thus, the clustering present in the data was quite strong. The simulation results for the stopping rules revealed a wide range in their ability to determine the correct number of clusters in the data. Several procedures worked fairly well, whereas others performed rather poorly. Thus, the latter group of rules would appear to have little validity, particularly for data sets containing distinct clusters. Applied researchers are urged to select one or more of the better criteria. However, users are cautioned that the performance of some of the criteria may be data dependent.

3,551 citations

Journal ArticleDOI
TL;DR: The authors present a fuzzy validity criterion based on a validity function which identifies compact and separate fuzzy c-partitions without assumptions as to the number of substructures inherent in the data.
Abstract: The authors present a fuzzy validity criterion based on a validity function which identifies compact and separate fuzzy c-partitions without assumptions as to the number of substructures inherent in the data. This function depends on the data set, geometric distance measure, distance between cluster centroids and more importantly on the fuzzy partition generated by any fuzzy algorithm used. The function is mathematically justified via its relationship to a well-defined hard clustering validity function, the separation index for which the condition of uniqueness has already been established. The performance of this validity function compares favorably to that of several others. The application of this validity function to color image segmentation in a computer color vision system for recognition of IC wafer defects which are otherwise impossible to detect using gray-scale image processing is discussed. >

3,237 citations

Journal ArticleDOI
TL;DR: This work considers statistical inference for regression when data are grouped into clusters, with regression model errors independent across clusters but correlated within clusters, when the number of clusters is large and default standard errors can greatly overstate estimator precision.
Abstract: We consider statistical inference for regression when data are grouped into clus- ters, with regression model errors independent across clusters but correlated within clusters. Examples include data on individuals with clustering on village or region or other category such as industry, and state-year dierences-in-dierences studies with clustering on state. In such settings default standard errors can greatly overstate es- timator precision. Instead, if the number of clusters is large, statistical inference after OLS should be based on cluster-robust standard errors. We outline the basic method as well as many complications that can arise in practice. These include cluster-specic �xed eects, few clusters, multi-way clustering, and estimators other than OLS.

3,236 citations

23 May 2000
TL;DR: This paper compares the two main approaches to document clustering, agglomerative hierarchical clustering and K-means, and indicates that the bisecting K-MEans technique is better than the standard K-Means approach and as good or better as the hierarchical approaches that were tested for a variety of cluster evaluation metrics.
Abstract: This paper presents the results of an experimental study of some common document clustering techniques. In particular, we compare the two main approaches to document clustering, agglomerative hierarchical clustering and K-means. (For K-means we used a “standard” K-means algorithm and a variant of K-means, “bisecting” K-means.) Hierarchical clustering is often portrayed as the better quality clustering approach, but is limited because of its quadratic time complexity. In contrast, K-means and its variants have a time complexity which is linear in the number of documents, but are thought to produce inferior clusters. Sometimes K-means and agglomerative hierarchical approaches are combined so as to “get the best of both worlds.” However, our results indicate that the bisecting K-means technique is better than the standard K-means approach and as good or better than the hierarchical approaches that we tested for a variety of cluster evaluation metrics. We propose an explanation for these results that is based on an analysis of the specifics of the clustering algorithms and the nature of document

2,899 citations

Proceedings ArticleDOI
01 Jun 1998
TL;DR: CLIQUE is presented, a clustering algorithm that satisfies each of these requirements of data mining applications including the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity to the order of input records.
Abstract: Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity to the order of input records. We present CLIQUE, a clustering algorithm that satisfies each of these requirements. CLIQUE identifies dense clusters in subspaces of maximum dimensionality. It generates cluster descriptions in the form of DNF expressions that are minimized for ease of comprehension. It produces identical results irrespective of the order in which input records are presented and does not presume any specific mathematical form for data distribution. Through experiments, we show that CLIQUE efficiently finds accurate cluster in large high dimensional datasets.

2,782 citations


Network Information
Related Topics (5)
Fuzzy logic
151.2K papers, 2.3M citations
92% related
Cluster analysis
146.5K papers, 2.9M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
90% related
Artificial neural network
207K papers, 4.5M citations
88% related
Deep learning
79.8K papers, 2.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023186
2022433
2021456
2020463
2019587
2018569