Topic

# Fuzzy number

About: Fuzzy number is a(n) research topic. Over the lifetime, 35606 publication(s) have been published within this topic receiving 972544 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

01 Aug 1996

TL;DR: A separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

Abstract: A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

50,974 citations

••

[...]

TL;DR: Various properties are proved, which are connected to the operations and relations over sets, and with modal and topological operators, defined over the set of IFS's.

Abstract: A definition of the concept 'intuitionistic fuzzy set' (IFS) is given, the latter being a generalization of the concept 'fuzzy set' and an example is described. Various properties are proved, which are connected to the operations and relations over sets, and with modal and topological operators, defined over the set of IFS's.

11,301 citations

•

[...]

01 Mar 1981

TL;DR: In this paper, the authors present a classification of MADM methods by data type and propose a ranking method based on the degree of similarity of the MADM method to the original MADM algorithm.

Abstract: I. Introduction.- II. Multiple Attribute Decision Making - An Overview.- 2.1 Basics and Concepts.- 2.2 Classifications of MADM Methods.- 2.2.1 Classification by Information.- 2.2.2 Classification by Solution Aimed At.- 2.2.3 Classification by Data Type.- 2.3 Description of MADM Methods.- Method (1): DOMINANCE.- Method (2): MAXIMIN.- Method (3): MAXIMAX.- Method (4): CONJUNCTIVE METHOD.- Method (5): DISJUNCTIVE METHOD.- Method (6): LEXICOGRAPHIC METHOD.- Method (7): LEXICOGRAPHIC SEMIORDER METHOD.- Method (8): ELIMINATION BY ASPECTS (EBA).- Method (9): LINEAR ASSIGNMENT METHOD (LAM).- Method (10): SIMPLE ADDITIVE WEIGHTING METHOD (SAW).- Method (11): ELECTRE (Elimination et Choice Translating Reality).- Method (12): TOPSIS (Technique for Order Preference by Similarity to Ideal Solution).- Method (13): WEIGHTED PRODUCT METHOD.- Method (14): DISTANCE FROM TARGET METHOD.- III. Fuzzy Sets and their Operations.- 3.1 Introduction.- 3.2 Basics of Fuzzy Sets.- 3.2.1 Definition of a Fuzzy Set.- 3.2.2 Basic Concepts of Fuzzy Sets.- 3.2.2.1 Complement of a Fuzzy Set.- 3.2.2.2 Support of a Fuzzy Set.- 3.2.2.3 ?-cut of a Fuzzy Set.- 3.2.2.4 Convexity of a Fuzzy Set.- 3.2.2.5 Normality of a Fuzzy Set.- 3.2.2.6 Cardinality of a Fuzzy Set.- 3.2.2.7 The mth Power of a Fuzzy Set.- 3.3 Set-Theoretic Operations with Fuzzy Sets.- 3.3.1 No Compensation Operators.- 3.3.1.1 The Min Operator.- 3.3.2 Compensation-Min Operators.- 3.3.2.1 Algebraic Product.- 3.3.2.2 Bounded Product.- 3.3.2.3 Hamacher's Min Operator.- 3.3.2.4 Yager's Min Operator.- 3.3.2.5 Dubois and Prade's Min Operator.- 3.3.3 Full Compensation Operators.- 3.3.3.1 The Max Operator.- 3.3.4 Compensation-Max Operators.- 3.3.4.1 Algebraic Sum.- 3.3.4.2 Bounded Sum.- 3.3.4.3 Hamacher's Max Operator.- 3.3.4.4 Yager's Max Operator.- 3.3.4.5 Dubois and Prade's Max Operator.- 3.3.5 General Compensation Operators.- 3.3.5.1 Zimmermann and Zysno's ? Operator.- 3.3.6 Selecting Appropriate Operators.- 3.4 The Extension Principle and Fuzzy Arithmetics.- 3.4.1 The Extension Principle.- 3.4.2 Fuzzy Arithmetics.- 3.4.2.1 Fuzzy Number.- 3.4.2.2 Addition of Fuzzy Numbers.- 3.4.2.3 Subtraction of Fuzzy Numbers.- 3.4.2.4 Multiplication of Fuzzy Numbers.- 3.4.2.5 Division of Fuzzy Numbers.- 3.4.2.6 Fuzzy Max and Fuzzy Min.- 3.4.3 Special Fuzzy Numbers.- 3.4.3.1 L-R Fuzzy Number.- 3.4.3.2 Triangular (or Trapezoidal) Fuzzy Number.- 3.4.3.3 Proof of Formulas.- 3.4.3.3.1 The Image of Fuzzy Number N.- 3.4.3.3.2 The Inverse of Fuzzy Number N.- 3.4.3.3.3 Addition and Subtraction.- 3.4.3.3.4 Multiplication and Division.- 3.5 Conclusions.- IV. Fuzzy Ranking Methods.- 4.1 Introduction.- 4.2 Ranking Using Degree of Optimality.- 4.2.1 Baas and Kwakernaak's Approach.- 4.2.2 Watson et al.'s Approach.- 4.2.3 Baldwin and Guild's Approach.- 4.3 Ranking Using Hamming Distance.- 4.3.1 Yager's Approach.- 4.3.2 Kerre's Approach.- 4.3.3 Nakamura's Approach.- 4.3.4 Kolodziejczyk's Approach.- 4.4 Ranking Using ?-Cuts.- 4.4.1 Adamo's Approach.- 4.4.2 Buckley and Chanas' Approach.- 4.4.3 Mabuchi's Approach.- 4.5 Ranking Using Comparison Function.- 4.5.1 Dubois and Prade's Approach.- 4.5.2 Tsukamoto et al.'s Approach.- 4.5.3 Delgado et al.'s Approach.- 4.6 Ranking Using Fuzzy Mean and Spread.- 4.6.1 Lee and Li's Approach.- 4.7 Ranking Using Proportion to The Ideal.- 4.7.1 McCahone's Approach.- 4.8 Ranking Using Left and Right Scores.- 4.8.1 Jain's Approach.- 4.8.2 Chen's Approach.- 4.8.3 Chen and Hwang's Approach.- 4.9 Ranking with Centroid Index.- 4.9.1 Yager's Centroid Index.- 4.9.2 Murakami et al.'s Approach.- 4.10 Ranking Using Area Measurement.- 4.10.1 Yager's Approach.- 4.11 Linguistic Ranking Methods.- 4.11.1 Efstathiou and Tong's Approach.- 4.11.2 Tong and Bonissone's Approach.- V. Fuzzy Multiple Attribute Decision Making Methods.- 5.1 Introduction.- 5.2 Fuzzy Simple Additive Weighting Methods.- 5.2.1 Baas and Kwakernaak's Approach.- 5.2.2 Kwakernaak's Approach.- 5.2.3 Dubois and Prade's Approach.- 5.2.4 Cheng and McInnis's Approach.- 5.2.5 Bonissone's Approach.- 5.3 Analytic Hierarchical Process (AHP) Methods.- 5.3.1 Saaty's AHP Approach.- 5.3.2 Laarhoven and Pedrycz's Approach.- 5.3.3 Buckley's Approach.- 5.4 Fuzzy Conjunctive/Disjunctive Method.- 5.4.1 Dubois, Prade, and Testemale's Approach.- 5.5 Heuristic MAUF Approach.- 5.6 Negi's Approach.- 5.7 Fuzzy Outranking Methods.- 5.7.1 Roy's Approach.- 5.7.2 Siskos et al.'s Approach.- 5.7.3 Brans et al.'s Approach.- 5.7.4 Takeda's Approach.- 5.8 Maximin Methods.- 5.8.1 Gellman and Zadeh's Approach.- 5.8.2 Yager's Approach.- 5.9 A New Approach to Fuzzy MADM Problems.- 5.9.1 Converting Linguistic Terms to Fuzzy Numbers.- 5.9.2 Converting Fuzzy Numbers to Crisp Scores.- 5.9.3 The Algorithm.- VI. Concluding Remarks.- 6.1 MADM Problems and Fuzzy Sets.- 6.2 On Existing MADM Solution Methods.- 6.2.1 Classical Methods for MADM Problems.- 6.2.2 Fuzzy Methods for MADM Problems.- 6.2.2.1 Fuzzy Ranking Methods.- 6.2.2.2 Fuzzy MADM Methods.- 6.3 Critiques of the Existing Fuzzy Methods.- 6.3.1 Size of Problem.- 6.3.2 Fuzzy vs. Crisp Data.- 6.4 A New Approach to Fuzzy MADM Problem Solving.- 6.4.1 Semantic Modeling of Linguistic Terms.- 6.4.2 Fuzzy Scoring System.- 6.4.3 The Solution.- 6.4.4 The Advantages of the New Approach.- 6.5 Other Multiple Criteria Decision Making Methods.- 6.5.1 Multiple Objective Decision Making Methods.- 6.5.2 Methods of Group Decision Making under Multiple Criteria.- 6.5.2.1 Social Choice Theory.- 6.5.2.2 Experts Judgement/Group Participation.- 6.5.2.3 Game Theory.- 6.6 On Future Studies.- 6.6.1 Semantics of Linguistic Terms.- 6.6.2 Fuzzy Ranking Methods.- 6.6.3 Fuzzy MADM Methods.- 6.6.4 MADM Expert Decision Support Systems.- VII. Bibliography.

8,628 citations

••

[...]

TL;DR: By relying on the use of linguistic variables and fuzzy algorithms, the approach provides an approximate and yet effective means of describing the behavior of systems which are too complex or too ill-defined to admit of precise mathematical analysis.

Abstract: The approach described in this paper represents a substantive departure from the conventional quantitative techniques of system analysis. It has three main distinguishing features: 1) use of so-called ``linguistic'' variables in place of or in addition to numerical variables; 2) characterization of simple relations between variables by fuzzy conditional statements; and 3) characterization of complex relations by fuzzy algorithms. A linguistic variable is defined as a variable whose values are sentences in a natural or artificial language. Thus, if tall, not tall, very tall, very very tall, etc. are values of height, then height is a linguistic variable. Fuzzy conditional statements are expressions of the form IF A THEN B, where A and B have fuzzy meaning, e.g., IF x is small THEN y is large, where small and large are viewed as labels of fuzzy sets. A fuzzy algorithm is an ordered sequence of instructions which may contain fuzzy assignment and conditional statements, e.g., x = very small, IF x is small THEN Y is large. The execution of such instructions is governed by the compositional rule of inference and the rule of the preponderant alternative. By relying on the use of linguistic variables and fuzzy algorithms, the approach provides an approximate and yet effective means of describing the behavior of systems which are too complex or too ill-defined to admit of precise mathematical analysis.

8,223 citations

•

[...]

TL;DR: Fuzzy Sets and Fuzzy Logic is a true magnum opus; it addresses practically every significant topic in the broad expanse of the union of fuzzy set theory and fuzzy logic.

Abstract: Fuzzy Sets and Fuzzy Logic is a true magnum opus. An enlargement of Fuzzy Sets, Uncertainty,
and Information—an earlier work of Professor Klir and Tina Folger—Fuzzy Sets and Fuzzy Logic
addresses practically every significant topic in the broad expanse of the union of fuzzy set theory
and fuzzy logic. To me Fuzzy Sets and Fuzzy Logic is a remarkable achievement; it covers its vast
territory with impeccable authority, deep insight and a meticulous attention to detail.
To view Fuzzy Sets and Fuzzy Logic in a proper perspective, it is necessary to clarify a point
of semantics which relates to the meanings of fuzzy sets and fuzzy logic.
A frequent source of misunderstanding fias to do with the interpretation of fuzzy logic. The
problem is that the term fuzzy logic has two different meanings. More specifically, in a narrow
sense, fuzzy logic, FLn, is a logical system which may be viewed as an extension and generalization
of classical multivalued logics. But in a wider sense, fuzzy logic, FL^ is almost synonymous
with the theory of fuzzy sets. In this context, what is important to recognize is that: (a) FLW is much
broader than FLn and subsumes FLn as one of its branches; (b) the agenda of FLn is very different
from the agendas of classical multivalued logics; and (c) at this juncture, the term fuzzy logic is
usually used in its wide rather than narrow sense, effectively equating fuzzy logic with FLW
In Fuzzy Sets and Fuzzy Logic, fuzzy logic is interpreted in a sense that is close to FLW. However,
to avoid misunderstanding, the title refers to both fuzzy sets and fuzzy logic.
Underlying the organization of Fuzzy Sets and Fuzzy Logic is a fundamental fact, namely,
that any field X and any theory Y can be fuzzified by replacing the concept of a crisp set in X and Y
by that of a fuzzy set. In application to basic fields such as arithmetic, topology, graph theory, probability
theory and logic, fuzzification leads to fuzzy arithmetic, fuzzy topology, fuzzy graph theory,
fuzzy probability theory and FLn. Similarly, hi application to applied fields such as neural network
theory, stability theory, pattern recognition and mathematical programming, fuzzification leads to
fuzzy neural network theory, fuzzy stability theory, fuzzy pattern recognition and fuzzy mathematical
programming. What is gained through fuzzification is greater generality, higher expressive
power, an enhanced ability to model real-world problems and, most importantly, a methodology for
exploiting the tolerance for imprecision—a methodology which serves to achieve tractability,

7,039 citations