scispace - formally typeset
Topic

Fuzzy set

About: Fuzzy set is a(n) research topic. Over the lifetime, 44405 publication(s) have been published within this topic receiving 1117065 citation(s). The topic is also known as: fuzzy sets.

...read more

Papers
  More

Open accessBook
01 Aug 1996-
Abstract: A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

...read more

Topics: Fuzzy set operations (76%), Type-2 fuzzy sets and systems (75%), Defuzzification (74%) ...read more

50,974 Citations


Journal ArticleDOI: 10.1016/S0165-0114(86)80034-3
Krassimir T. Atanassov1Institutions (1)
Abstract: A definition of the concept 'intuitionistic fuzzy set' (IFS) is given, the latter being a generalization of the concept 'fuzzy set' and an example is described. Various properties are proved, which are connected to the operations and relations over sets, and with modal and topological operators, defined over the set of IFS's.

...read more

Topics: Fuzzy set operations (70%), Type-2 fuzzy sets and systems (64%), Fuzzy set (63%) ...read more

11,301 Citations


Open accessBook
01 Mar 1981-
Abstract: I. Introduction.- II. Multiple Attribute Decision Making - An Overview.- 2.1 Basics and Concepts.- 2.2 Classifications of MADM Methods.- 2.2.1 Classification by Information.- 2.2.2 Classification by Solution Aimed At.- 2.2.3 Classification by Data Type.- 2.3 Description of MADM Methods.- Method (1): DOMINANCE.- Method (2): MAXIMIN.- Method (3): MAXIMAX.- Method (4): CONJUNCTIVE METHOD.- Method (5): DISJUNCTIVE METHOD.- Method (6): LEXICOGRAPHIC METHOD.- Method (7): LEXICOGRAPHIC SEMIORDER METHOD.- Method (8): ELIMINATION BY ASPECTS (EBA).- Method (9): LINEAR ASSIGNMENT METHOD (LAM).- Method (10): SIMPLE ADDITIVE WEIGHTING METHOD (SAW).- Method (11): ELECTRE (Elimination et Choice Translating Reality).- Method (12): TOPSIS (Technique for Order Preference by Similarity to Ideal Solution).- Method (13): WEIGHTED PRODUCT METHOD.- Method (14): DISTANCE FROM TARGET METHOD.- III. Fuzzy Sets and their Operations.- 3.1 Introduction.- 3.2 Basics of Fuzzy Sets.- 3.2.1 Definition of a Fuzzy Set.- 3.2.2 Basic Concepts of Fuzzy Sets.- 3.2.2.1 Complement of a Fuzzy Set.- 3.2.2.2 Support of a Fuzzy Set.- 3.2.2.3 ?-cut of a Fuzzy Set.- 3.2.2.4 Convexity of a Fuzzy Set.- 3.2.2.5 Normality of a Fuzzy Set.- 3.2.2.6 Cardinality of a Fuzzy Set.- 3.2.2.7 The mth Power of a Fuzzy Set.- 3.3 Set-Theoretic Operations with Fuzzy Sets.- 3.3.1 No Compensation Operators.- 3.3.1.1 The Min Operator.- 3.3.2 Compensation-Min Operators.- 3.3.2.1 Algebraic Product.- 3.3.2.2 Bounded Product.- 3.3.2.3 Hamacher's Min Operator.- 3.3.2.4 Yager's Min Operator.- 3.3.2.5 Dubois and Prade's Min Operator.- 3.3.3 Full Compensation Operators.- 3.3.3.1 The Max Operator.- 3.3.4 Compensation-Max Operators.- 3.3.4.1 Algebraic Sum.- 3.3.4.2 Bounded Sum.- 3.3.4.3 Hamacher's Max Operator.- 3.3.4.4 Yager's Max Operator.- 3.3.4.5 Dubois and Prade's Max Operator.- 3.3.5 General Compensation Operators.- 3.3.5.1 Zimmermann and Zysno's ? Operator.- 3.3.6 Selecting Appropriate Operators.- 3.4 The Extension Principle and Fuzzy Arithmetics.- 3.4.1 The Extension Principle.- 3.4.2 Fuzzy Arithmetics.- 3.4.2.1 Fuzzy Number.- 3.4.2.2 Addition of Fuzzy Numbers.- 3.4.2.3 Subtraction of Fuzzy Numbers.- 3.4.2.4 Multiplication of Fuzzy Numbers.- 3.4.2.5 Division of Fuzzy Numbers.- 3.4.2.6 Fuzzy Max and Fuzzy Min.- 3.4.3 Special Fuzzy Numbers.- 3.4.3.1 L-R Fuzzy Number.- 3.4.3.2 Triangular (or Trapezoidal) Fuzzy Number.- 3.4.3.3 Proof of Formulas.- 3.4.3.3.1 The Image of Fuzzy Number N.- 3.4.3.3.2 The Inverse of Fuzzy Number N.- 3.4.3.3.3 Addition and Subtraction.- 3.4.3.3.4 Multiplication and Division.- 3.5 Conclusions.- IV. Fuzzy Ranking Methods.- 4.1 Introduction.- 4.2 Ranking Using Degree of Optimality.- 4.2.1 Baas and Kwakernaak's Approach.- 4.2.2 Watson et al.'s Approach.- 4.2.3 Baldwin and Guild's Approach.- 4.3 Ranking Using Hamming Distance.- 4.3.1 Yager's Approach.- 4.3.2 Kerre's Approach.- 4.3.3 Nakamura's Approach.- 4.3.4 Kolodziejczyk's Approach.- 4.4 Ranking Using ?-Cuts.- 4.4.1 Adamo's Approach.- 4.4.2 Buckley and Chanas' Approach.- 4.4.3 Mabuchi's Approach.- 4.5 Ranking Using Comparison Function.- 4.5.1 Dubois and Prade's Approach.- 4.5.2 Tsukamoto et al.'s Approach.- 4.5.3 Delgado et al.'s Approach.- 4.6 Ranking Using Fuzzy Mean and Spread.- 4.6.1 Lee and Li's Approach.- 4.7 Ranking Using Proportion to The Ideal.- 4.7.1 McCahone's Approach.- 4.8 Ranking Using Left and Right Scores.- 4.8.1 Jain's Approach.- 4.8.2 Chen's Approach.- 4.8.3 Chen and Hwang's Approach.- 4.9 Ranking with Centroid Index.- 4.9.1 Yager's Centroid Index.- 4.9.2 Murakami et al.'s Approach.- 4.10 Ranking Using Area Measurement.- 4.10.1 Yager's Approach.- 4.11 Linguistic Ranking Methods.- 4.11.1 Efstathiou and Tong's Approach.- 4.11.2 Tong and Bonissone's Approach.- V. Fuzzy Multiple Attribute Decision Making Methods.- 5.1 Introduction.- 5.2 Fuzzy Simple Additive Weighting Methods.- 5.2.1 Baas and Kwakernaak's Approach.- 5.2.2 Kwakernaak's Approach.- 5.2.3 Dubois and Prade's Approach.- 5.2.4 Cheng and McInnis's Approach.- 5.2.5 Bonissone's Approach.- 5.3 Analytic Hierarchical Process (AHP) Methods.- 5.3.1 Saaty's AHP Approach.- 5.3.2 Laarhoven and Pedrycz's Approach.- 5.3.3 Buckley's Approach.- 5.4 Fuzzy Conjunctive/Disjunctive Method.- 5.4.1 Dubois, Prade, and Testemale's Approach.- 5.5 Heuristic MAUF Approach.- 5.6 Negi's Approach.- 5.7 Fuzzy Outranking Methods.- 5.7.1 Roy's Approach.- 5.7.2 Siskos et al.'s Approach.- 5.7.3 Brans et al.'s Approach.- 5.7.4 Takeda's Approach.- 5.8 Maximin Methods.- 5.8.1 Gellman and Zadeh's Approach.- 5.8.2 Yager's Approach.- 5.9 A New Approach to Fuzzy MADM Problems.- 5.9.1 Converting Linguistic Terms to Fuzzy Numbers.- 5.9.2 Converting Fuzzy Numbers to Crisp Scores.- 5.9.3 The Algorithm.- VI. Concluding Remarks.- 6.1 MADM Problems and Fuzzy Sets.- 6.2 On Existing MADM Solution Methods.- 6.2.1 Classical Methods for MADM Problems.- 6.2.2 Fuzzy Methods for MADM Problems.- 6.2.2.1 Fuzzy Ranking Methods.- 6.2.2.2 Fuzzy MADM Methods.- 6.3 Critiques of the Existing Fuzzy Methods.- 6.3.1 Size of Problem.- 6.3.2 Fuzzy vs. Crisp Data.- 6.4 A New Approach to Fuzzy MADM Problem Solving.- 6.4.1 Semantic Modeling of Linguistic Terms.- 6.4.2 Fuzzy Scoring System.- 6.4.3 The Solution.- 6.4.4 The Advantages of the New Approach.- 6.5 Other Multiple Criteria Decision Making Methods.- 6.5.1 Multiple Objective Decision Making Methods.- 6.5.2 Methods of Group Decision Making under Multiple Criteria.- 6.5.2.1 Social Choice Theory.- 6.5.2.2 Experts Judgement/Group Participation.- 6.5.2.3 Game Theory.- 6.6 On Future Studies.- 6.6.1 Semantics of Linguistic Terms.- 6.6.2 Fuzzy Ranking Methods.- 6.6.3 Fuzzy MADM Methods.- 6.6.4 MADM Expert Decision Support Systems.- VII. Bibliography.

...read more

Topics: Fuzzy number (64%), Fuzzy set (59%), Fuzzy logic (58%) ...read more

8,628 Citations


Journal ArticleDOI: 10.1016/S0165-0114(99)80004-9
Lotfi A. Zadeh1Institutions (1)
Abstract: The theory of possibility described in this paper is related to the theory of fuzzy sets by defining the concept of a possibility distribution as a fuzzy restriction which acts as an elastic constraint on the values that may be assigned to a variable. More specifically, if F is a fuzzy subset of a universe of discourse U={u} which is characterized by its membership function μF, then a proposition of the form “X is F,” where X is a variable taking values in U, induces a possibility distribution ∏X which equates the possibility of X taking the value u to μF(u)—the compatibility of u with F. In this way, X becomes a fuzzy variable which is associated with the possibility distribution ∏x in much the same way as a random variable is associated with a probability distribution. In general, a variable may be associated both with a possibility distribution and a probability distribution, with the weak connection between the two expressed as the possibility/probability consistency principle. A thesis advanced in this paper is that the imprecision that is intrinsic in natural languages is, in the main, possibilistic rather than probabilistic in nature. Thus, by employing the concept of a possibility distribution, a proposition, p, in a natural language may be translated into a procedure which computes the probability distribution of a set of attributes which are implied by p. Several types of conditional translation rules are discussed and, in particular, a translation rule for propositions of the form “X is F is α-possible,” where α is a number in the interval [0, 1], is formulated and illustrated by examples.

...read more

8,549 Citations


Journal ArticleDOI: 10.1109/TSMC.1973.5408575
Lotfi A. Zadeh1Institutions (1)
01 Jan 1973-
Abstract: The approach described in this paper represents a substantive departure from the conventional quantitative techniques of system analysis. It has three main distinguishing features: 1) use of so-called ``linguistic'' variables in place of or in addition to numerical variables; 2) characterization of simple relations between variables by fuzzy conditional statements; and 3) characterization of complex relations by fuzzy algorithms. A linguistic variable is defined as a variable whose values are sentences in a natural or artificial language. Thus, if tall, not tall, very tall, very very tall, etc. are values of height, then height is a linguistic variable. Fuzzy conditional statements are expressions of the form IF A THEN B, where A and B have fuzzy meaning, e.g., IF x is small THEN y is large, where small and large are viewed as labels of fuzzy sets. A fuzzy algorithm is an ordered sequence of instructions which may contain fuzzy assignment and conditional statements, e.g., x = very small, IF x is small THEN Y is large. The execution of such instructions is governed by the compositional rule of inference and the rule of the preponderant alternative. By relying on the use of linguistic variables and fuzzy algorithms, the approach provides an approximate and yet effective means of describing the behavior of systems which are too complex or too ill-defined to admit of precise mathematical analysis.

...read more

Topics: Fuzzy set operations (66%), Fuzzy number (65%), Type-2 fuzzy sets and systems (64%) ...read more

8,223 Citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202231
20211,424
20201,448
20191,442
20181,433
20171,434

Top Attributes

Show by:

Topic's top 5 most impactful authors

Witold Pedrycz

459 papers, 20.9K citations

Ronald R. Yager

210 papers, 15.7K citations

Henri Prade

179 papers, 29K citations

Didier Dubois

155 papers, 26.2K citations

Cengiz Kahraman

150 papers, 5.4K citations

Network Information
Related Topics (5)
Fuzzy logic

151.2K papers, 2.3M citations

97% related
Fuzzy number

35.6K papers, 972.5K citations

97% related
Fuzzy classification

27.3K papers, 849.9K citations

97% related
Defuzzification

25K papers, 768.3K citations

96% related
Fuzzy set operations

29.4K papers, 955.8K citations

96% related