scispace - formally typeset
Search or ask a question

Showing papers on "GABAergic published in 2002"


Journal ArticleDOI
TL;DR: A strain of mice is generated that expresses the Cre recombinase in a spatial and temporal pattern like that observed for Emx1, and it is demonstrated that radial glia, Cajal-Retzius cells, glutamatergic neurons, astrocytes, and oligodendrocytic cells of most pallial structures originate from an EmX1-expressing lineage.
Abstract: By homologous recombination of an internal ribosome entry site and Cre recombinase coding region into the 3′-untranslated region of the mouse Emx1 gene, we have generated a strain of mice, Emx1IREScre, that expresses the Cre recombinase in a spatial and temporal pattern like that observed for Emx1. When mated to reporter strains, these mice are a sensitive means to fate-map the Emx1-expressing cells of the developing forebrain. Our results demonstrate that radial glia, Cajal-Retzius cells, glutamatergic neurons, astrocytes, and oligodendrocytes of most pallial structures originate from an Emx1-expressing lineage. On the other hand, most of the pallial GABAergic neurons arise outside the Emx1-expressing lineage. Structures that are located near the basal ganglia (e.g., the amygdala and endopiriform nuclei) are not uniformly derived from Emx1-expressing cells.

1,179 citations


Journal ArticleDOI
15 Nov 2002-Science
TL;DR: A spontaneous, rhythmic activity initiated in the subiculum of slices from patients with temporal lobe epilepsy was described, similar to interictal discharges of patient electroencephalograms.
Abstract: The origin and mechanisms of human interictal epileptic discharges remain unclear. Here, we describe a spontaneous, rhythmic activity initiated in the subiculum of slices from patients with temporal lobe epilepsy. Synchronous events were similar to interictal discharges of patient electroencephalograms. They were suppressed by antagonists of either glutamatergic or γ-aminobutyric acid (GABA)–ergic signaling. The network of neurons discharging during population events comprises both subicular interneurons and a subgroup of pyramidal cells. In these pyramidal cells, GABAergic synaptic events reversed at depolarized potentials. Depolarizing GABAergic responses in neurons downstream to the sclerotic CA1 region contribute to human interictal activity.

930 citations


Journal ArticleDOI
14 Mar 2002-Neuron
TL;DR: The results suggest that spatial and temporal differences in nicotinic receptor activity on both excitatory and inhibitory neurons in reward areas coordinate to reinforce nicotine self-administration.

689 citations


Journal ArticleDOI
06 Jun 2002-Nature
TL;DR: It is suggested that modifications in the expression pattern of transcription factors in the forebrain may underlie species-specific programmes for the generation of neocortical local circuit neurons and that distinct lineages of cortical interneurons may be differentially affected in genetic and acquired diseases of the human brain.
Abstract: The mammalian neocortex contains two major classes of neurons, projection and local circuit neurons. Projection neurons contain the excitatory neurotransmitter glutamate, while local circuit neurons are inhibitory, containing GABA. The complex function of neocortical circuitry depends on the number and diversity of GABAergic (gamma-aminobutyric-acid-releasing) local circuit neurons. Using retroviral labelling in organotypic slice cultures of the embryonic human forebrain, we demonstrate the existence of two distinct lineages of neocortical GABAergic neurons. One lineage expresses Dlx1/2 and Mash1 transcription factors, represents 65% of neocortical GABAergic neurons in humans, and originates from Mash1-expressing progenitors of the neocortical ventricular and subventricular zone of the dorsal forebrain. The second lineage, characterized by the expression of Dlx1/2 but not Mash1, forms around 35% of the GABAergic neurons and originates from the ganglionic eminence of the ventral forebrain. We suggest that modifications in the expression pattern of transcription factors in the forebrain may underlie species-specific programmes for the generation of neocortical local circuit neurons and that distinct lineages of cortical interneurons may be differentially affected in genetic and acquired diseases of the human brain.

666 citations


Journal ArticleDOI
TL;DR: Results show that strikingly realistic activity is produced by the model when compared to real EEG signals recorded with intracerebral electrodes, and show that the transition from interictal to fast ictal activity is explained by the impairment of dendritic inhibition.
Abstract: This paper focuses on high-frequency (gamma band) EEG activity, the most characteristic electrophysiological pattern in focal seizures of human epilepsy. It starts with recent hypotheses about: (i) the behaviour of inhibitory interneurons in hippocampal or neocortical networks in the generation of gamma frequency oscillations; (ii) the nonuniform alteration of GABAergic inhibition in experimental epilepsy (reduced dendritic inhibition and increased somatic inhibition); and (iii) the possible depression of GABA A , f a s t circuit activity by GABA A , s l o w inhibitory postsynaptic currents. In particular, these hypotheses are introduced in a new computational macroscopic model of EEG activity that includes a physiologically relevant fast inhibitory feedback loop. Results show that strikingly realistic activity is produced by the model when compared to real EEG signals recorded with intracerebral electrodes. They show that, in the model, the transition from interictal to fast ictal activity is explained by the impairment of dendritic inhibition.

573 citations


Journal ArticleDOI
TL;DR: It is shown that exposure of rat hippocampal slice cultures and acute slices to exogenous BDNF or neurotrophin-4 produces a TrkB-mediated fall in the neuron-specific K+–Cl− cotransporter KCC2 mRNA and protein, as well as a consequent impairment in neuronal Cl− extrusion capacity.
Abstract: Pathophysiological activity and various kinds of traumatic insults are known to have deleterious long-term effects on neuronal Cl− regulation, which can lead to a suppression of fast postsynaptic GABAergic responses. Brain-derived neurotrophic factor (BDNF) increases neuronal excitability through a conjunction of mechanisms that include regulation of the efficacy of GABAergic transmission. Here, we show that exposure of rat hippocampal slice cultures and acute slices to exogenous BDNF or neurotrophin-4 produces a TrkB-mediated fall in the neuron-specific K+–Cl− cotransporter KCC2 mRNA and protein, as well as a consequent impairment in neuronal Cl− extrusion capacity. After kindling-induced seizures in vivo, the expression of KCC2 is down-regulated in the mouse hippocampus with a spatiotemporal profile complementary to the up-regulation of TrkB and BDNF. The present data demonstrate a novel mechanism whereby BDNF/TrkB signaling suppresses chloride-dependent fast GABAergic inhibition, which most likely contributes to the well-known role of TrkB-activated signaling cascades in the induction and establishment of epileptic activity.

567 citations


Journal ArticleDOI
TL;DR: It is concluded that the tuberomammillary nucleus (TMN) is a discrete neural locus that has a key role in the sedative response to GABAergic anesthetics.
Abstract: We investigated the role of regionally discrete GABA (gamma-aminobutyric acid) receptors in the sedative response to pharmacological agents that act on GABA(A) receptors (muscimol, propofol and pentobarbital; 'GABAergic agents') and to ketamine, a general anesthetic that does not affect GABA(A) receptors. Behavioral studies in rats showed that the sedative response to centrally administered GABAergic agents was attenuated by the GABA(A) receptor antagonist gabazine (systemically administered). The sedative response to ketamine, by contrast, was unaffected by gabazine. Using c-Fos as a marker of neuronal activation, we identified a possible role for the tuberomammillary nucleus (TMN): when gabazine was microinjected directly into the TMN, it attenuated the sedative response to GABAergic agents. Furthermore, the GABA(A) receptor agonist muscimol produced a dose-dependent sedation when it was administered into the TMN. We conclude that the TMN is a discrete neural locus that has a key role in the sedative response to GABAergic anesthetics.

549 citations


Journal ArticleDOI
TL;DR: The preponderance of available evidence suggests that glutamatergic and GABAergic modulation may be an important property of available antidepressant and mood-stabilizing agents.
Abstract: Glutamate and γ-amino butyric acid (GABA) systems are emerging as targets for development of medications for mood disorders. There is increasing preclinical and clinical evidence that antidepressant drugs directly or indirectly reduce N-methyl-D-aspartate glutamate receptor function. Drugs that reduce glutamatergic activity or glutamate receptor-related signal transduction may also have antimanic effects. Recent studies employing magnetic resonance spectroscopy also suggest that unipolar, but not bipolar, depression is associated with reductions in cortical GABA levels. Antidepressant and mood-stabilizing treatments also appear to raise cortical GABA levels and to ameliorate GABA deficits in patients with mood disorders. The preponderance of available evidence suggests that glutamatergic and GABAergic modulation may be an important property of available antidepressant and mood-stabilizing agents. Future research will be needed to develop and evaluate new agents with specific glutamate and GABA receptor targets in the treatment of mood disorders.

515 citations


Journal ArticleDOI
TL;DR: The goal of this review is to examine novel pharmacological and molecular tools that target the neural mechanisms for different kinds of aggressive behavior more selectively than previously possible and to outline potential pharmacotherapeutic options.
Abstract: Background and rationale Aggressive outbursts that result in harm and injury present a major problem for the public health and criminal justice systems, but there are no adequate treatment options Obstacles at the level of social policy, institutional regulation, and scientific strategy in developing animal models continue to impede the development of specific anti-aggressive agents for emergency and long-term treatments Objective To be more relevant to the clinical situation, preclinical aggression research has begun to focus on the neurobiological determinants of escalated aggressive behavior that exceeds species-typical patterns It is the goal of this review to examine novel pharmacological and molecular tools that target the neural mechanisms for different kinds of aggressive behavior more selectively than previously possible and to outline potential pharmacotherapeutic options Results and conclusions (1) The preclinical focus on the behavioral characteristics and determinants of intense aggression promises to be most relevant to the clinical distinction between the proposed impulsive-reactive-hostile-affective subtypes of human aggression and the controlled-proactive-instrumental-predatory subtypes of aggression The neural circuits for many types of human and animal aggression critically involve serotonin, dopamine and gamma-aminobutyric acid (GABA) and specific receptor subtypes (2) The dynamic changes in frontal cortical serotonin that are triggered by engaging in aggressive behavior imply that serotonergic drug effects are largely determined by the functional state of the receptors at the time of drug treatment Of the numerous 5-HT receptors currently identified, the 5-HT(1B) receptors offer a promising target for reducing impulsive aggressive behavior, particularly if the action can be limited to sites in the central nervous system (3) Aggressive confrontations are salient stressors, both for the aggressor as well as the victim of aggression, that are accompanied by activation of the mesocorticolimbic but not the striatal dopamine system Dopaminergic manipulations, particularly targeting the D(2) receptor family, can influence aggressive behavior in animals and human patients, suggesting that mesocorticolimbic dopamine may have important enabling or permissive functions (4) GABA is critical in the neurochemical control of aggressive behavior as evidenced by studies that directly modify GABAergic neurotransmission and neurochemical studies that correlate GABA measurements with aggressive behavioral responses in several animal species The GABA(A) receptor complex is a mechanism through which certain benzodiazepines and alcohol enhance and inhibit aggressive behaviors Social and pharmacological experiences decisively determine the effects of GABAergic positive modulators on aggression

419 citations


Journal ArticleDOI
TL;DR: Subtype-selective occurrence of electrical coupling, finding for potassium channel Kv3.1 proteins, and cholinergic and serotonergic modulation supports a tentative classification of GABA cell subtypes in the frontal cortex.
Abstract: It remains to be clarified how many classes of GABAergic nonpyramidal cells exist in the cortical circuit. We have divided GABA cells in the rat frontal cortex into 3 groups, based on their firing characteristics: fast-spiking (FS) cells, late-spiking (LS) cells, and non-FS cells. Expression of calcium-binding proteins and peptides could be shown in separate groups of GABA cells in layers II/III and V of the frontal cortex: (1) parvalbumin cells, (2) somatostatin cells, (3) calretinin and/or vasoactive intestinal polypeptide (VIP) cells [partially positive for cholecystokinin (CCK)] and (4) large CCK cells (almost negative for VIP/calretinin). Combining the physiological and chemical properties of morphologically diverse nonpyramidal cells allows division into several groups, including FS basket cells containing parvalbumin, non-FS somatostatin Martinotti cells with ascending axonal arbors, and non-FS large basket cells positive for CCK. These subtypes show characteristic spatial distributions of axon collaterals and the innervation tendency of postsynaptic elements. With synchronized activity induced by cortical excitatory or inhibitory circuits, firing patterns were also found to differ. Subtype-selective occurrence of electrical coupling, finding for potassium channel Kv3.1 proteins, and cholinergic and serotonergic modulation supports our tentative classification. To clarify the functional architecture in the frontal cortex, it is important to reveal the connectional characteristics of GABA cell subtypes and determine whether they are similar to those in other cortical regions.

397 citations


Journal ArticleDOI
TL;DR: Increased striatal transmitter release in response to NO may be mediated by its stimulatory action on cyclic GMP formation and indirectly through its stimulation of local cholinergic and GABAergic neurones.
Abstract: The effects of nitric oxide (NO) and cyclic GMP on in vivo transmitter release in the rat striatum were investigated using microdialysis sampling in urethane-anaesthetised animals. The NO release-inducing substances S-nitrosoacetylpenicillamine (SNAP), S-nitrosoglutathione (SNOG), and sodium nitroprusside (SNP) increased extracellular concentrations of aspartate (Asp), glutamate (Glu), gamma-aminobutyric acid (GABA), taurine (Tau), acetylcholine (ACh), and serotonin (5-HT). Dopamine (DA) concentrations were decreased by SNAP but were increased by SNOG and SNP. An NO scavenger, haemoglobin, blocked or reduced the effects of SNAP on transmitter release. However, the control carrier compounds for SNAP, SNOG, and SNAP (penicillamine, glutathione, and potassium ferricyanide, respectively, which do not induce release of NO) also increased GABA, Tau, DA, and 5-HT concentrations. When NO gas was given directly by dissolving it in degassed Ringer's solution, DA concentrations decreased significantly, and those of Asp, Glu, GABA, Tau, ACh, and 5-HT increased. These effects of NO gas were all inhibited by coadministration of haemoglobin and for GABA, Tau, ACh, and DA showed some calcium dependency. The cyclic GMP agonists 8-bromo-cyclic GMP and dibutryl-cyclic GMP stimulated dose-dependent increases in Asp, Glu, GABA, Tau, ACh, DA, and 5-HT concentrations. Increased striatal transmitter release in response to NO may therefore be mediated by its stimulatory action on cyclic GMP formation. NO inhibition of DA release may be mediated indirectly through its stimulation of local cholinergic and GABAergic neurones.

Journal ArticleDOI
TL;DR: The focus of this study is to relate enhanced inhibition to the several forms of inhibitory systems present in the hippocampal formation and develop hypotheses as to the primary derangements that may account for pathological inhibition in prenatal malnutrition.

Journal ArticleDOI
TL;DR: Findings suggest that deficits of specific GABAergic neurons, defined by the presence of calcium-binding proteins, are present in schizophrenia, and trends toward similar reductions are observed in bipolar disorder.

Journal ArticleDOI
TL;DR: Data suggest that the GABAergic system is substantially modulated by menstrual cycle phase in healthy women and those with premenstrual dysphoric disorder, and raise the possibility of disturbances in cortical GABA neuronal function and modulation by neuroactive steroids as potentially important contributors to the pathogenesis of PMDD.
Abstract: Background There is increasing support for the hypothesis that gonadal steroids involved in the regulation of the human menstrual cycle modulate γ-aminobutyric acid (GABA) neuronal function. This study tests the hypothesis that cortical GABA neuronal function, reflected in brain GABA concentrations, fluctuates across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder (PMDD) and that a menstrual cycle phase–dependent abnormality in brain GABA concentrations in women diagnosed as having PMDD would reflect altered central response to circulating gonadal and neuroactive steroids. Methods Fourteen healthy menstruating women and 9 women diagnosed as having PMDD were recruited from a women's behavioral health research program located at a university-based medical center. The women underwent serial proton magnetic resonance spectroscopic measurements of occipital cortex GABA levels across the menstrual cycle (primary outcome measure) and had blood drawn for gonadal hormone and neurosteroid levels determined on each scan day (secondary outcome measure). Results There was a significant group × phase interaction with most of the finding explained by the reduction in cortical GABA levels during the follicular phase in those with PMDD compared with healthy controls. Cortical GABA levels declined across the menstrual cycle in healthy women, whereas women with PMDD experienced an increase in cortical GABA levels from the follicular phase to the mid luteal and late luteal phases. Significant between-group differences in the relationship between hormones and GABA were observed for estradiol, progesterone, and allopregnanolone. Conclusions These data strongly suggest that the GABAergic system is substantially modulated by menstrual cycle phase in healthy women and those with PMDD. Furthermore, they raise the possibility of disturbances in cortical GABA neuronal function and modulation by neuroactive steroids as potentially important contributors to the pathogenesis of PMDD.

Journal ArticleDOI
TL;DR: The results indicate that PV-FS cells are highly interconnected in the adult cerebral cortex by both electrical and chemical synapses, establishing networks that can have important implications for coordinating activity in cortical circuits.
Abstract: Networks of γ-aminobutyric acid (GABA)ergic interneurons connected via electrical and chemical synapses are thought to play an important role in detecting and promoting synchronous activity in the cerebral cortex. Although the properties of electrical and chemical synaptic interactions among inhibitory interneurons are critical for their function as a network, they have only been studied systematically in juvenile animals. Here, we have used transgenic mice expressing the enhanced green fluorescent protein in cells containing parvalbumin (PV) to study the synaptic connectivity among fast-spiking (FS) cells in slices from adult animals (2–7 months old). We have recorded from pairs of PV-FS cells and found that the majority of them were electrically coupled (61%, 14 of 23 pairs). In addition, 78% of the pairs were connected via GABAergic chemical synapses, often reciprocally. The average coupling coefficient for step injections was 1.5% (n = 14), a smaller value than that reported in juvenile animals. GABA-mediated inhibitory postsynaptic currents and potentials decayed with exponential time constants of 2.6 and 5.9 ms, respectively, and exhibited paired-pulse depression (50-ms interval). The inhibitory synaptic responses in the adult were faster than those observed in young animals. Our results indicate that PV-FS cells are highly interconnected in the adult cerebral cortex by both electrical and chemical synapses, establishing networks that can have important implications for coordinating activity in cortical circuits.

Journal ArticleDOI
TL;DR: It is shown that the developmental increase in GABAergic input is prevented in animals deprived of light since birth but not after a period of normal experience, and sensory experience appears to play a permissive role in the maturation of intracortical GABAergic circuits.
Abstract: We studied the role of sensory experience in the maturation of GABAergic circuits in the rat visual cortex. Between the time at which the eyes first open and the end of the critical period for experience-dependent plasticity, the total GABAergic input converging into layer II/III pyramidal cells increases threefold. We propose that this increase reflects changes in the number of quanta released by presynaptic axons. Here, we show that the developmental increase in GABAergic input is prevented in animals deprived of light since birth but not in animals deprived of light after a period of normal experience. Thus, sensory experience appears to play a permissive role in the maturation of intracortical GABAergic circuits.

Journal ArticleDOI
TL;DR: It is suggested that the nicotinic excitation of FS interneurons may play an important role in translating the effect of the brief behaviorally contingent cessation of firing of the tonically active cholinergic interneeurons to the output neurons of the neostriatum.
Abstract: GABAergic interneurons appear to play a fundamental role in the functioning of the neostriatum by modulating the spiking of striatal projection neurons with great efficacy. The powerful and strongly divergent output of the GABAergic interneurons neurons suggests that modulation of their activity may be particularly effective at controlling the functioning of the entire neostriatal circuitry. Acetylcholine is one of the main modulators of striatal functioning. The effects of acetylcholine on fast-spiking (FS) GABAergic interneurons were studied with whole-cell recording in an in vitro slice preparation. Acetylcholine exerted two distinct effects on fast-spiking interneurons. Acetylcholine directly depolarized FS interneurons by acting on nondesensitizing soma-dendritic nicotinic receptors. In addition, acetylcholine attenuated the GABAergic inhibition of projection neurons by fast-spiking interneurons through activation of presynaptic muscarinic receptors. It is suggested that the nicotinic excitation of FS interneurons may play an important role in translating the effect of the brief behaviorally contingent cessation of firing of the tonically active cholinergic interneurons to the output neurons of the neostriatum. In contrast, the muscarinic presynaptic inhibitory mechanism may be engaged primarily during longer-lasting elevations of extracellular acetylcholine levels.

Journal ArticleDOI
TL;DR: The results indicate that the presence and strength of electrical coupling is developmentally regulated with respect to brain area and cell type.
Abstract: GABAergic interneurons can pace the activity of principal cells and are thus critically involved in the generation of oscillatory and synchronous network activity. The specific role of various GABAergic subpopulations, however, has remained elusive. This is in part attributable to the scarcity of certain GABAergic neurons and the difficulty of identifying them in slices obtained from brain regions in which anatomical structures are not readily recognizable in the live preparation. To facilitate the functional analysis of GABAergic interneurons, we generated transgenic mice in which the enhanced green fluorescent protein (EGFP) was specifically expressed in parvalbumin-positive neurons. The high fidelity of expression obtained using bacterial artificial chromosome transgenes resulted in EGFP-labeled neurons in nearly all brain regions known to contain parvalbumin-expressing neurons. Immunocytochemical analysis showed that EGFP expression was primarily restricted to parvalbumin-positive cells. In addition to cell body labeling, EGFP expression was high enough in many neurons to enable the visualization of dendritic structures. With the help of these mice, we investigated the presence of electrical coupling between parvalbumin-positive cells in brain slices obtained from young and adult animals. In dentate gyrus basket cells, electrical coupling was found in slices from young [postnatal day 14 (P14)] and adult (P28 and P42) animals, but both strength and incidence of coupling decreased during development. However, electrical coupling between parvalbumin-positive multipolar cells in layer II/III of the neocortex remains unaltered during development. Yet another developmental profile of electrical coupling was found between layer II/III parvalbumin-positive cells and excitatory principal cells. Between these neurons, electrical coupling was found at P14 but not at P28. The results indicate that the presence and strength of electrical coupling is developmentally regulated with respect to brain area and cell type.

Journal ArticleDOI
TL;DR: It is concluded that receptor targeting to broad subcellular locations does not require specific GABAergic innervation patterns, which are disturbed in vitro, but depends on protein‐protein interactions in the postsynaptic cell that are both subunit‐ and neuron‐specific.
Abstract: The cellular and subcellular distribution of four GABA(A) receptor subtypes, identified by the presence of the alpha1, alpha2, alpha3, or alpha5 subunit, was investigated immunocytochemically in dissociated cultures of hippocampal neurons. We addressed the questions whether (1) cell-type specific expression, (2) axonal/somatodendritic targeting, and (3) synaptic/extrasynaptic clustering of GABA(A) receptor subtypes was retained in vitro. For comparison, the in vivo distribution pattern was assessed in sections from adult rat brain. The differential expression of GABA(A) receptor subunits allowed to identify five morphologically distinct cell types in culture: the alpha1 subunit was observed in glutamic acid decarboxylase-positive interneurons, the alpha2 and alpha5 subunits marked pyramidal-like cells, and the alpha3 subunit labeled three additional cell types, including presumptive hilar cells. All subunits were found in the somatodendritic compartment. In addition, appropriate axonal targeting was evidenced by the intense alpha2, and sometimes alpha3 subunit labeling of axon-initial segments (AIS) of pyramidal cells and hilar cells, respectively. Accordingly, both receptor subtypes were targeted to AIS in vivo, as well. Synaptic receptors were identified by colocalization with gephyrin, a postsynaptic clustering protein, and apposition to presynaptic terminals labeled with synapsin I. In vitro and in vivo, alpha1- and alpha2-receptor subtypes formed numerous synaptic clusters, alpha3-GABA(A) receptors were located either synaptically or extrasynaptically depending on the cell type, whereas alpha5-GABA(A) receptors were extrasynaptic. We conclude that receptor targeting to broad subcellular locations does not require specific GABAergic innervation patterns, which are disturbed in vitro, but depends on protein-protein interactions in the postsynaptic cell that are both subunit- and neuron-specific.

Journal ArticleDOI
TL;DR: This work adapted the electroporation method to ectopically express DLX proteins in slice cultures of the mouse embryonic cerebral cortex and showed that ectopic expression of Dlx2 and DlX5 induced the expression of glutamic acid decarboxylases (GADs), the enzymes that synthesize GABA.
Abstract: The expression of the Dlx homeobox genes is closely associated with neurons that express γ-aminobutyric acid (GABA) in the embryonic rostral forebrain. To test whether the Dlx genes are sufficient to induce some aspects of the phenotype of GABAergic neurons, we adapted the electroporation method to ectopically express DLX proteins in slice cultures of the mouse embryonic cerebral cortex. This approach showed that ectopic expression of Dlx2 and Dlx5 induced the expression of glutamic acid decarboxylases (GADs), the enzymes that synthesize GABA. We also used this method to show cross-regulation between different Dlx family members. We find that Dlx2 can induce Dlx5 expression, and that Dlx1, Dlx2 and Dlx5 can induce expression from a Dlx5/6-lacZ enhancer/”reporter construct.

Journal ArticleDOI
TL;DR: A differential involvement of adrenergic, glutamatergic and GABAergic mechanisms in regulating neurosecretory populations of the PVH is supported and involvement of local circuit neurons must be carefully considered in the interpretation of microinjection studies.
Abstract: Norepinephrine (NE), glutamate (Glu), and GABA have been identified as important neurotransmitters governing neuroendocrine mechanisms represented in the paraventricular nucleus of the hypothalamus (PVH). Microinjection studies were used to compare the efficacy of these transmitter mechanisms in stimulating PVH output neurons. Local administration of NE provoked an increase in plasma corticosterone levels and Fos induction in the both the parvocellular and magnocellular divisions of the nucleus. This treatment also stimulated a robust increase in corticotropin-releasing factor (CRF) heteronuclear (hn) RNA in the parvocellular PVH and a more subtle, although reliable, increase in arginine vasopressin (AVP) hnRNA in this same compartment. Local administration of the GABA(A) receptor antagonist bicuculline methiodide (BMI) resulted in increased plasma corticosterone and, in contrast to NE treatment, Fos induction limited primarily to the parvocellular PVH. BMI elicited marked increases in both CRH and AVP hnRNAs within the parvocellular division of the nucleus. Over a wide range of concentrations, Glu failed to produce reliable increases in corticosterone secretion and induced only weak activational responses limited primarily to non-neurosecretory regions of the PVH. Local Glu administration did, however, provoke Fos induction in identified GABAergic neurons immediately adjoining the PVH, suggesting that the muted response to Glu may be a consequence of concurrent activation of local inhibitory interneurons. These results support a differential involvement of adrenergic, glutamatergic and GABAergic mechanisms in regulating neurosecretory populations of the PVH and suggest that involvement of local circuit neurons must be carefully considered in the interpretation of microinjection studies.

Journal ArticleDOI
TL;DR: In this article, it was shown that activation of CB 1 cannabinoid receptors inhibits GABAergic neurotransmission in the ventral tegmental area (VTA) with a presynaptic mechanism.
Abstract: It was shown recently that A9-tetrahydrocannabinol, like several other drugs eliciting euphoria, stimulates dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens. The aim of the present work was to clarify the mechanism of this stimulatory effect. Our hypothesis was that cannabinoids depress the GABAergic inhibition of dopaminergic neurons in the VTA. Electrophysiological properties of VTA neurons in rat coronal midbrain slices were studied with the patch-clamp technique. GABA A receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by electrical stimulation in the vicinity of the recorded neurons. The amplitude of IPSCs was depressed by the synthetic mixed CB 1 /CB 2 cannabinoid receptor agonist WIN55212-2 (10 - 6 and 10 - 5 M). The CB 1 cannabinoid receptor antagonist SR141716A (10 - 6 M) prevented the inhibition produced by WIN55212-2 (10 - 5 M). Two observations showed that IPSCs were depressed with a presynaptic mechanism. WIN55212-2 (10 - 5 M) did not change the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Currents evoked by pressure ejection of muscimol from a pipette were also not changed by WIN55212-2 (10 - 5 M). The results indicate that activation of CB 1 cannabinoid receptors inhibits GABAergic neurotransmission in the VTA with a presynaptic mechanism. Depression of the GABAergic inhibitory input of dopaminergic neurons would increase their firing rate in vivo. Accordingly, dopamine release in the projection region of VTA neurons, the nucleus accumbens, would also increase.

Journal ArticleDOI
TL;DR: The observations, together with previously reported enrichment of the α2subunit-containing receptors in synapses made by PV-negative basket cells, indicate that the number and subtypes of GABAAreceptors present in different synapse populations are regulated by both presynaptic and postsynaptic influences.
Abstract: Networks of parvalbumin (PV)-expressing basket cells are implicated in synchronizing cortical neurons at various frequencies, through GABA(A) receptor-mediated synaptic action. These cells are interconnected by GABAergic synapses and gap junctions, and converge with a different class of cholecystokinin-expressing, PV-negative basket cells onto pyramidal cells. To define the molecular specializations in the synapses of the two basket cell populations, we used quantitative electron microscopic immunogold localization of GABA(A) receptors. Synapses formed by PV-positive basket cells on the somata of pyramidal cells had several-fold higher density of alpha1 subunit-containing receptors than synapses made by PV-negative basket cells, most of which were immunonegative. The density of the beta2/3 subunits was similar in the two populations of synapse, indicating similar overall receptor density. Synapses interconnecting parvalbumin-expressing basket cells contained a 3.6 times higher overall density of GABA(A) receptor (beta2/3 subunits) and 3.2 times higher density of alpha1 subunit labeling compared with synapses formed by boutons of PV-positive basket cells on pyramidal cells. Thus, PV-positive basket cells mainly act through alpha1 subunit-containing GABA(A) receptors, but the receptor density depends on the postsynaptic cell type. These observations, together with previously reported enrichment of the alpha2 subunit-containing receptors in synapses made by PV-negative basket cells, indicate that the number and subtypes of GABA(A) receptors present in different synapse populations are regulated by both presynaptic and postsynaptic influences. The high number of GABA(A) receptors in synapses on basket cells might contribute to the precisely timed phasing of basket cell activity.

Journal ArticleDOI
TL;DR: It is shown that BDNF facilitates high K+-elicited release of GABA but not of glutamate and induces an increase in immunoreactive signals of glutamic acid decarboxylase, a GABA-synthesizing enzyme, which indicates that it principally promotes GABAergic maturation but may also potentially contribute to excitatory synapse development via increasing resting synaptic vesicles.
Abstract: Brain-derived neurotrophic factor (BDNF) has been implicated in activity-dependent plasticity of neuronal function and network arrangement. To clarify how BDNF exerts its action, we evaluated the physiological, histological, and biochemical characteristics of cultured hippocampal neurons after long-term treatment with BDNF. Here we show that BDNF facilitates high K(+)-elicited release of GABA but not of glutamate and induces an increase in immunoreactive signals of glutamic acid decarboxylase, a GABA-synthesizing enzyme. The soma size of GABAergic neurons was enlarged in BDNF-treated cultures, whereas the average soma size of all neurons was virtually unchanged. BDNF also upregulated protein levels of GABA(A) receptors but not of glutamate receptors. These data imply that BDNF selectively advances the maturation of GABAergic synapses. However, immunocytochemical analyses revealed that a significant expression of TrkB, a high-affinity receptor for BDNF, was detected in non-GABAergic as well as GABAergic neurons. BDNF also increased to total amount of synaptic vesicle-associated proteins without affecting the number of presynaptic vesicles that can be labeled with FM1-43 after K(+) depolarization. Together, our findings indicate that BDNF principally promotes GABAergic maturation but may also potentially contribute to excitatory synapse development via increasing resting synaptic vesicles.

Journal ArticleDOI
TL;DR: Cerebellar precursors are deleted by Wnt1-driven Cre–mediated recombination to study the function of the TrkB in the cerebellum, finding that it is essential to the development of GABAergic neurons and regulates synapse formation in addition to its role in theDevelopment of axon terminals.
Abstract: Neurotrophins are essential to the normal development and maintenance of the nervous system. Neurotrophin signaling is mediated by Trk family tyrosine kinases such as TrkA, TrkB and TrkC, as well as by the pan-neurotrophin receptor p75NTR. Here we have deleted the trkB gene in cerebellar precursors by Wnt1-driven Cre–mediated recombination to study the function of the TrkB in the cerebellum. Despite the absence of TrkB, the mature cerebellum of mutant mice appears similar to that of wild type, with all types of cell present in normal numbers and positions. Granule and Purkinje cell dendrites appear normal and the former have typical numbers of excitatory synapses. By contrast, inhibitory interneurons are strongly affected: although present in normal numbers, they express reduced amounts of GABAergic markers and develop reduced numbers of GABAergic boutons and synaptic specializations. Thus, TrkB is essential to the development of GABAergic neurons and regulates synapse formation in addition to its role in the development of axon terminals.

Journal ArticleDOI
TL;DR: A clear correlation is established between the presence of the 5-HT3A receptor subunit in neocortical VIP/CCK GABAergic interneurons, its functional expression, and its synaptic activation by serotonergic afferent fibers from the brainstem raphe nuclei.
Abstract: Neocortical neurons expressing the serotonin 5-HT3 receptor (5-HT3R) were characterized in rat acute slices by using patch-clamp recordings combined with single-cell RT-PCR and histochemical labeling. The 5-HT3A receptor subunit was expressed selectively in a subset of GABAergic interneurons coexpressing cholecystokinin (CCK) and vasoactive intestinal peptide (VIP). The 5-HT3B subunit was never detected, indicating that 5-HT3Rs expressed by neocortical interneurons did not contain this subunit. In 5-HT3A-expressing VIP/CCK interneurons, serotonin induced fast membrane potential depolarizations by activating an inward current that was blocked by the selective 5-HT3R antagonist tropisetron. Furthermore, we observed close appositions between serotonergic fibers and the dendrites and somata of 5-HT3R-expressing neurons, suggestive of possible synaptic contacts. Indeed, in interneurons exhibiting rapid excitation by serotonin, local electrical stimulations evoked fast EPSCs of large amplitude that were blocked by tropisetron. Finally, 5-HT3R-expressing neurons were also excited by a nicotinic agonist, indicating that serotonergic and cholinergic fast synaptic transmission could converge onto VIP/CCK interneurons. Our results establish a clear correlation between the presence of the 5-HT3A receptor subunit in neocortical VIP/CCK GABAergic interneurons, its functional expression, and its synaptic activation by serotonergic afferent fibers from the brainstem raphe nuclei.

Journal ArticleDOI
TL;DR: These results demonstrate that, within areas of overlap of functionally distinct projections, there is synaptic convergence at the single cell level and suggest that sensorimotor integration in the basal ganglia is likely to be mediated, at least in part, by striatal GABAergic interneurons.
Abstract: Cortical afferents to the basal ganglia, and in particular the corticostriatal projections, are critical in the expression of basal ganglia function in health and disease. The corticostriatal projections are topographically organized but also partially overlap and interdigitate. To determine whether projections from distinct cortical areas converge at the level of single interneurons in the striatum, double anterograde labeling from the primary motor (M1) and primary somatosensory (S1) cortices in the rat, was combined with immunolabeling for parvalbumin (PV), to identify one population of striatal GABAergic interneurons. Cortical afferents from M1 and S1 gave rise to distinct, but partially overlapping, arbors of varicose axons in the striatum. PV-positive neurons were often apposed by cortical terminals and, in many instances, apposed by terminals from both cortical areas. Frequently, individual cortical axons formed multiple varicosities apposed to the same PV-positive neuron. Electron microscopy confirmed that the cortical terminals formed asymmetric synapses with the dendrites and perikarya of PV-positive neurons as well as unlabelled dendritic spines. Correlated light and electron microscopy revealed that individual PV-positive neurons received synaptic input from axon terminals derived from both motor and somatosensory cortices. These results demonstrate that, within areas of overlap of functionally distinct projections, there is synaptic convergence at the single cell level. Sensorimotor integration in the basal ganglia is thus likely to be mediated, at least in part, by striatal GABAergic interneurons. Furthermore, our findings suggest that the pattern of innervation of GABAergic interneurons by cortical afferents is different from the cortical innervation of spiny projection neurons.

Journal ArticleDOI
TL;DR: GABAergic fibres from an extrareticular diencephalic source were found to selectively innervate relay cells located mainly in higher‐order thalamic nuclei, suggesting that a significant proportion of the GABAergic input into certain thalamus territories involved in higher-order functions may have extrareticle origin.
Abstract: Thalamocortical circuits that govern cortical rhythms and ultimately effect sensory transmission consist of three major interconnected elements: excitatory thalamocortical and corticothalamic neurons and GABAergic cells in the reticular thalamic nucleus. Based on the present results, a fourth component has to be added to this scheme. GABAergic fibres from an extrareticular diencephalic source were found to selectively innervate relay cells located mainly in higher-order thalamic nuclei. The origin of this pathway was localized to zona incerta (ZI), known to receive collaterals from corticothalamic fibres. First-order nuclei were innervated only in zones showing a high density of calbindin-positive neurons. The large GABA-immunoreactive incertal terminals established multiple contacts preferentially on the proximal dendrites of relay cells via symmetrical synapses with multiple release sites. The distribution, ultrastructural characteristics and postsynaptic target selection of extrareticular terminals were similar to type II muscarinic acetylcholine receptor-positive boutons, which constituted up to 49% of all GABAergic terminals in the posterior nucleus. This suggests that a significant proportion of the GABAergic input into certain thalamic territories involved in higher-order functions may have extrareticular origin. Unlike the reticular nucleus, ZI receives peripheral and layer V cortical input but no thalamic feedback; it projects to brainstem centres and has extensive intranuclear recurrent collaterals. This indicates that ZI exerts a conceptually new type of inhibitory control over the thalamus. The proximally situated, multiple active zones of ZI terminals indicate a powerful influence on the firing properties of thalamic neurons, which is conveyed to multiple cortical areas via relay cells which have widespread projections to neocortex.

Journal ArticleDOI
TL;DR: The present results indicate that potentiation of GABAergic synapses, via a PKA-dependent mechanism, occurs in the VTA after a single in vivo exposure to ethanol, and such potentiation might be a key synaptic modification underlying increased ethanol intake.
Abstract: The mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) is involved in many drug-related behaviors, including ethanol self-administration. In particular, VTA activity regulating ethanol consummatory behavior appears to be modulated through GABAA receptors. Previous exposure to ethanol enhances ethanol self-administration, but the mechanisms underlying this phenomenon are not well understood. In this study, we examined changes occurring at GABA synapses onto VTA DA neurons after a single in vivo exposure to ethanol. We observed that evoked GABAA IPSCs in DA neurons of ethanol-treated animals exhibited paired-pulse depression (PPD) compared with saline-treated animals, which exhibited paired-pulse facilitation (PPF). Furthermore, PPD was still present 1 week after the single exposure to ethanol. An increase in frequency of spontaneous miniature GABAA IPSCs (mIPSCs) was also observed in the ethanol-treated animals. Additionally, the GABAB receptor antagonist (3-aminopropyl)(diethoxymethyl) phosphinic acid shifted PPD to PPF, indicating that presynaptic GABAB receptor activation, likely attributable to GABA spillover, might play a role in mediating PPD in the ethanol-treated mice. The activation of adenylyl cyclase by forskolin increased the amplitude of GABAA IPSCs and the frequency of mIPSCs in the saline- but not in the ethanol-treated animals. Conversely, the protein kinase A (PKA) inhibitor N -[z-( p -bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide significantly decreased both the frequency of spontaneous mIPSCs and the amplitude of GABAA IPSCs in the ethanol-treated mice but not in the saline controls. The present results indicate that potentiation of GABAergic synapses, via a PKA-dependent mechanism, occurs in the VTA after a single in vivo exposure to ethanol, and such potentiation might be a key synaptic modification underlying increased ethanol intake.

Journal ArticleDOI
TL;DR: Barosensitive, bulbospinal neurons in the rostral ventrolateral medulla (RVLM), which provide the major tonic excitatory drive to sympathetic vasomotor neurons, are prominently inhibited by GABA.
Abstract: 1. Barosensitive, bulbospinal neurons in the rostral ventrolateral medulla (RVLM), which provide the major tonic excitatory drive to sympathetic vasomotor neurons, are prominently inhibited by GABA. 2. A major source of the GABAergic inhibition to presympathetic RVLM neurons arises from an area immediately caudal to the RVLM, known as the caudal ventrolateral medulla (CVLM). 3. Arterial baroreceptor afferents projecting to the nucleus tractus solitarius (NTS) provide a major tonic excitatory input to GABAergic CVLM neurons. These CVLM cells are a critical component for baroreflex-mediated changes in presympathetic RVLM neuronal activity, sympathetic nerve activity (SNA) and arterial pressure (AP). 4. Some GABAergic CVLM neurons are tonically activated by inputs independent of arterial baroreceptors or the NTS, providing a GABAergic-mediated inhibition of the presympathetic RVLM neurons that is autonomous of baroreceptor inputs. 5. GABAergic CVLM neurons appear to play two distinct, yet important, roles in the regulation of sympathetic vasomotor tone and AP. They dampen immediate changes in AP via the baroreflex and tonically inhibit the activity of the presympathetic RVLM neurons by baroreceptor-independent mechanisms. This baroreceptor-independent, GABAergic inhibition of presympathetic RVLM neurons may play an important role in determining the long-term level of sympathetic vasomotor tone and AP.