scispace - formally typeset
Search or ask a question

Showing papers on "GABAergic published in 2011"


Journal ArticleDOI
22 Sep 2011-Neuron
TL;DR: Using genetic engineering in mice, approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons are generated, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior.

1,655 citations


Journal ArticleDOI
TL;DR: The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states andbehavioral contexts.
Abstract: An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ∼40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ∼30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ∼30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states and behavioral contexts.

1,211 citations


Journal ArticleDOI
14 Jul 2011-Neuron
TL;DR: This work takes an alternative approach and tests whether first-order neurons are inhibitory (GABAergic, VGAT⁺) or excitatory (glutamatergic, VGLUT2⁺), which mediates the vast majority of leptin's antiobesity effects.

993 citations


Journal ArticleDOI
TL;DR: Clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders is summarized and the GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.
Abstract: Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. In this review, we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and by alterations in the subunit composition of the principal receptors (GABA(A) receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that suggests that GABA has a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs (ADs) designed to alter monoaminergic transmission and nonpharmacological therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission has an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Finally, comparatively modest deficits in GABAergic transmission in GABA(A) receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical and neuroendocrine phenotypes, as well as AD response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.

661 citations


Journal ArticleDOI
TL;DR: In this article, the magnitude of M1 GABA decrease induced by anodal tDCS correlated positively with motor learning and the degree of fMRI signal change within the left M1 during learning, and the responsiveness of the GABAergic system to modification may be relevant to short-term motor learning behavior and learning-related brain activity.

505 citations


Journal ArticleDOI
12 May 2011-Neuron
TL;DR: This work focuses on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins and reviews neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.

414 citations


Journal ArticleDOI
TL;DR: A relationship was found between MRS‐assessed GABA and a TMS protocol with less clearly understood physiological underpinnings that may reflect extrasynaptic GABA tone, suggesting that MRS measures of glutamate do reflect glutamatergic activity.
Abstract: Magnetic resonance spectroscopy (MRS) allows measurement of neurotransmitter concentrations within a region of interest in the brain. Inter-individual variation in MRS-measured GABA levels have been related to variation in task performance in a number of regions. However, it is not clear how MRS-assessed measures of GABA relate to cortical excitability or GABAergic synaptic activity. We therefore performed two studies investigating the relationship between neurotransmitter levels as assessed by MRS and transcranial magnetic stimulation (TMS) measures of cortical excitability and GABA synaptic activity in the primary motor cortex. We present uncorrected correlations, where the P value should therefore be considered with caution. We demonstrated a correlation between cortical excitability, as assessed by the slope of the TMS input-output curve and MRS-assessed glutamate levels (r = 0.803, P = 0.015) but no clear relationship between MRS-assessed GABA levels and TMS-assessed synaptic GABA(A) activity (2.5 ms inter-stimulus interval (ISI) short-interval intracortical inhibition (SICI); Experiment 1: r = 0.33, P = 0.31; Experiment 2: r = -0.23, P = 0.46) or GABA(B) activity (long-interval intracortical inhibition (LICI); Experiment 1: r = -0.47, P = 0.51; Experiment 2: r = 0.23, P = 0.47). We demonstrated a significant correlation between MRS-assessed GABA levels and an inhibitory TMS protocol (1 ms ISI SICI) with distinct physiological underpinnings from the 2.5 ms ISI SICI (r = -0.79, P = 0.018). Interpretation of this finding is challenging as the mechanisms of 1 ms ISI SICI are not well understood, but we speculate that our results support the possibility that 1 ms ISI SICI reflects a distinct GABAergic inhibitory process, possibly that of extrasynaptic GABA tone.

321 citations


Journal ArticleDOI
TL;DR: A dysfunction of the GABAergic signaling early in development leads to a severe E/I unbalance in neuronal circuits, a condition that may account for some of the behavioral deficits observed in ASD patients.
Abstract: Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, marked impairment in verbal and nonverbal communication, social skills, and cognition. Interestingly, in a small number of cases, ASDs are associated with single mutations in genes encoding for neuroligin-neurexin families. These are adhesion molecules which, by regulating transsynaptic signaling, contribute to maintain a proper excitatory/inhibitory (E/I) balance at the network level. Furthermore, GABA, the main inhibitory neurotransmitter in adult life, at late embryonic/early postnatal stages has been shown to depolarize and excite targeted cell through an outwardly directed flux of chloride. The depolarizing action of GABA and associated calcium influx regulate a variety of developmental processes from cell migration and differentiation to synapse formation. Here, we summarize recent data concerning the functional role of GABA in building up and refining neuronal circuits early in development and the molecular mechanisms regulating the E/I balance. A dysfunction of the GABAergic signaling early in development leads to a severe E/I unbalance in neuronal circuits, a condition that may account for some of the behavioral deficits observed in ASD patients.

262 citations


Journal ArticleDOI
01 Jan 2011-Glia
TL;DR: The antiinflammatory actions of GABA offer new therapeutic opportunities since agonists should enhance the effectiveness of other antiinflammatory agents that operate through non‐GABA pathways.
Abstract: GABA is assumed to function in brain only as an inhibitory neurotransmitter. Here we report a much broader CNS role. We show that human astrocytes are GABAergic cells, and that human microglia are GABAceptive cells. We show that in adult human brain tissue, astrocytes immunostain for the GABA synthesizing enzyme GAD 67, the GABA metabolizing enzyme GABA-T and the GABA(A) and GABA(B) receptors. The intensity of staining is comparable or greater to that observed for known inhibitory neurons. We show that cultured human astrocytes strongly express the mRNA and protein for GAD 67, as well as GABA-T, and the GABA(A) and GABA(B) receptors. We further show that cultured human microglia express the mRNA and protein for GABA-T, in addition to the GABA(A) and GABA(B) receptors characterizing them as GABAceptive cells. We demonstrate that GABA suppresses the reactive response of both astrocytes and microglia to the inflammatory stimulants lipopolysaccharide (LPS) and interferon-γ by inhibiting induction of inflammatory pathways mediated by NFκB and P38 MAP kinase. This results in a reduced release of the inflammatory cytokines TNFα and IL-6 and an attenuation of conditioned medium neurotoxicity toward neuroblastoma SH-SY5Y cells. These inhibitory reactions are partially mimicked by the GABA(A) receptor agonist muscimol and the GABA(B) receptor agonist baclofen, indicating that GABA can stimulate both types of receptors in astrocytes as well as microglia. We conclude that the antiinflammatory actions of GABA offer new therapeutic opportunities since agonists should enhance the effectiveness of other antiinflammatory agents that operate through non-GABA pathways.

262 citations


Journal ArticleDOI
TL;DR: Experimental data that point at the paradoxical role played by GABA(A) receptor-mediated mechanisms in synchronizing neuronal networks, and in particular those of limbic structures such as the hippocampus, the entorhinal and perirhinal cortices, are reviewed.

230 citations


Journal ArticleDOI
TL;DR: It is demonstrated that positive feedback of neurosteroids onto CRH neurons is required to mount the physiological response to stress, and GABAAR δ subunit-containing receptors and phosphorylation of KCC2 residue Ser940 may be novel targets for control of the stress response.
Abstract: The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body's response to stress, is largely under GABAergic control. Here we demonstrate that corticotropin-releasing hormone (CRH) neurons are modulated by the stress-derived neurosteroid, tetrahydrodeoxycorticosterone (THDOC), acting on δ subunit-containing GABA(A) receptors (GABA(A)Rs). Under normal conditions, THDOC potentiates the inhibitory effects of GABA on CRH neurons, decreasing the activity of the HPA axis. Counterintuitively, following stress, THDOC activates the HPA axis due to dephosphorylation of KCC2 residue Ser940, resulting in a collapse of the chloride gradient and excitatory GABAergic transmission. The effects of THDOC on CRH neurons are mediated by actions on GABA(A)R δ subunit-containing receptors since these effects are abolished in Gabrd(-/-) mice under both control and stress conditions. Interestingly, blocking neurosteroidogenesis with finasteride is sufficient to block the stress-induced elevations in corticosterone and prevent stress-induced anxiety-like behaviors in mice. These data demonstrate that positive feedback of neurosteroids onto CRH neurons is required to mount the physiological response to stress. Further, GABA(A)R δ subunit-containing receptors and phosphorylation of KCC2 residue Ser940 may be novel targets for control of the stress response, which has therapeutic potential for numerous disorders associated with hyperexcitability of the HPA axis, including Cushing's syndrome, epilepsy, and major depression.

Journal ArticleDOI
TL;DR: The results reveal expression specificity of CRF, NPY, SPR, and NOS in morphologically and physiologically distinct interneuron classes, which support the existence of a limited number of functionally distinct subtypes of GABA cells in the neocortex.
Abstract: Whether neocortical γ-aminobutyric acid (GABA) cells are composed of a limited number of distinct classes of neuron, or whether they are continuously differentiated with much higher diversity, remains a contentious issue for the field. Most GABA cells of rat frontal cortex have at least 1 of 6 chemical markers (parvalbumin, calretinin, alpha-actinin-2, somatostatin, vasoactive intestinal polypeptide, and cholecystokinin), with each chemical class comprising several distinct neuronal subtypes having specific physiological and morphological characteristics. To better clarify GABAergic neuron diversity, we assessed the colocalization of these 6 chemical markers with corticotropin-releasing factor (CRF), neuropeptide Y (NPY), the substance P receptor (SPR), and nitric oxide synthase (NOS); these 4 additional chemical markers suggested to be expressed diversely or specifically among cortical GABA cells. We further correlated morphological and physiological characteristics of identified some chemical subclasses of inhibitory neurons. Our results reveal expression specificity of CRF, NPY, SPR, and NOS in morphologically and physiologically distinct interneuron classes. These observations support the existence of a limited number of functionally distinct subtypes of GABA cells in the neocortex.

Journal ArticleDOI
TL;DR: It is suggested that this thalamic GABAergic nucleus may be involved in the neurobiology of schizophrenia, and deficits in attention and sensory gating have been consistently found in schizophrenics, including first-break and chronic patients.
Abstract: Background: The thalamic reticular nucleus (TRN) is a shell-shaped gamma amino butyric acid (GABA)ergic nucleus, which is uniquely placed between the thalamus and the cortex, because it receives excitatory afferents from both cortical and thalamic neurons and sends inhibitory projections to all nuclei of the dorsal thalamus. Method: A review of the evidence suggesting that the TRN is implicated in the neurobiology of schizophrenia. Results: TRN-thalamus circuits are implicated in bottom-up as well as top-down processing. TRN projections to nonspecific nuclei of the dorsal thalamus mediate top-down processes, including attentional modulation, which are initiated by cortical afferents to the TRN. TRN-thalamus circuits are also involved in bottom-up activities, including sensory gating and the transfer to the cortex of sleep spindles. Intriguingly, deficits in attention and sensory gating have been consistently found in schizophrenics, including first-break and chronic patients. Furthermore, high-density electroencephalographic studies have revealed a marked reduction in sleep spindles in schizophrenics. Conclusion: On the basis of our current knowledge on the molecular and anatomo-functional properties of the TRN, we suggest that this thalamic GABAergic nucleus may be involved in the neurobiology of schizophrenia.

Journal ArticleDOI
TL;DR: The data support a model of the raphe as an area composed of functionally distinct subpopulations of 5-HT and non-5-HT neurons, in part delineated by subfield, and provide an important foundation for understanding how specific subfields modulate behavior.

Journal ArticleDOI
TL;DR: The studies in mice suggest that when associated with VPA, clinically relevant doses of clozapine elicit a synergistic potentiation of VPA-induced GABAergic promoter demethylation, which appears to be a unique property of the dibenzepines and is independent of their action on catecholamine or serotonin receptors.

Journal ArticleDOI
TL;DR: Amino acids related to neurotransmitters and the GABAergic/glutamatergic system were measured using a 3 T-MRI instrument in patients with autism and normal controls, suggesting a possible abnormality in the regulation between GABA and Glu.
Abstract: Amino acids related to neurotransmitters and the GABAergic/glutamatergic system were measured using a 3 T-MRI instrument in 12 patients with autism and 10 normal controls. All measurements were performed in the frontal lobe (FL) and lenticular nuclei (LN) using a conventional sequence for n-acetyl aspartate (NAA) and glutamate (Glu), and the MEGA-editing method for GABA. The GABA level and [GABA]/[NAA] ratio were significantly lower (p < 0.01) in the FL, but not the LN, in patients with autism compared to normal controls. The [GABA]/[Glu] ratio in the FL was also significantly lower (p < 0.05) in the patients than in the normal controls, thus suggesting a possible abnormality in the regulation between GABA and Glu.

Journal ArticleDOI
TL;DR: It was shown that NRG1 increased both the number and size of PSD-95 puncta and the frequency and amplitude of miniature EPSCs (mEPSCs) in GABAergic interneurons, indicating thatNRG1 stimulates the formation of new synapses and strengthens existing synapses, and a novel synaptogenic role of NRG 1 in excitatory synapse development, and this effect is specific to GABAergicinterneuron.
Abstract: Neuregulin 1 (NRG1) and its receptor ErbB4 are both susceptibility genes of schizophrenia. However, little is known about the underlying mechanisms of their malfunction. Although ErbB4 is enriched in GABAergic interneurons, the role of NRG1 in excitatory synapse formation in these neurons remains poorly understood. We showed that NRG1 increased both the number and size of PSD-95 puncta and the frequency and amplitude of miniature EPSCs (mEPSCs) in GABAergic interneurons, indicating that NRG1 stimulates the formation of new synapses and strengthens existing synapses. In contrast, NRG1 treatment had no effect on either the number or size of excitatory synapses in glutamatergic neurons, suggesting its synaptogenic effect is specific to GABAergic interneurons. Ecto-ErbB4 treatment diminished both the number and size of excitatory synapses, suggesting that endogenous NRG1 may be critical for basal synapse formation. NRG1 could stimulate the stability of PSD-95 in the manner that requires tyrosine kinase activity of ErbB4. Finally, deletion of ErbB4 in parvalbumin-positive interneurons led to reduced frequency and amplitude of mEPSCs, providing in vivo evidence that ErbB4 is important in excitatory synaptogenesis in interneurons. Together, our findings suggested a novel synaptogenic role of NRG1 in excitatory synapse development, possibly via stabilizing PSD-95, and this effect is specific to GABAergic interneurons. In light of the association of the genes of both NRG1 and ErbB4 with schizophrenia and dysfunction of GABAergic system in this disorder, these results provide insight into its potential pathological mechanism.

Journal ArticleDOI
TL;DR: MDD was characterized by low DLPFC SST, whereas decreased PV mRNA appears to distinguish BPD from MDD, and Decreased SST levels in MDD were confirmed at the protein precursor level.
Abstract: Reduced cortical c-aminobutyric acid (GABA) levels and altered markers for subpopulations of GABA interneurons have been reported in major depressive disorder (MDD) by in-vivo brain imaging and post-mortem histological studies. Subgroups of GABA interneurons exert differential inhibitory control on principal pyramidal neurons and can be identified based on the non-overlapping expression of the calcium-binding proteins parvalbumin (PV) or calretinin (CR) or the neuropeptide somatostatin (SST). As altered markers of GABAergic functions may also be present in bipolar disorder (BPD), the specificity of particular GABA-related molecular deficits in mood disorders is not known. We used real-time quantitative polymerase chain reaction (qPCR) to assess expression levels of two GABA synthesizing enzymes (glutamate decarboxylase ; GAD65 and GAD67) and of three markers of GABA neuron subpopulations (PV, CR, SST) in the dorsolateral prefrontal cortex (DLPFC ; Brodmann area 9) in triads (n=19) of control subjects and matched subjects with BPD or MDD. BPD subjects demonstrated significantly reduced PV mRNA, trend level reduction in SST mRNA and no alterations in GAD67, GAD65, or CR mRNA levels ; MDD subjects demonstrated reduced SST mRNA expression without alterations in the other transcripts. The characteristic age-related decline in SST expression was not observed in MDD, as low expression was detected across age in MDD subjects. After controlling for age, MDD subjects demonstrated significantly reduced SST mRNA expression. Decreased SST levels in MDD were confirmed at the protein precursor level. Results were not explained by other clinical, demographic or technical parameters. In summary, MDD was characterized by low DLPFC SST, whereas decreased PV mRNA appears to distinguish BPD from MDD.

Journal ArticleDOI
TL;DR: This work identifies gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium.
Abstract: Postsynaptic scaffolding proteins ensure efficient neurotransmission by anchoring receptors and signaling molecules in synapse-specific subcellular domains In turn, posttranslational modifications of scaffolding proteins contribute to synaptic plasticity by remodeling the postsynaptic apparatus Though these mechanisms are operant in glutamatergic synapses, little is known about regulation of GABAergic synapses, which mediate inhibitory transmission in the CNS Here, we focused on gephyrin, the main scaffolding protein of GABAergic synapses We identify a unique phosphorylation site in gephyrin, Ser270, targeted by glycogen synthase kinase 3β (GSK3β) to modulate GABAergic transmission Abolishing Ser270 phosphorylation increased the density of gephyrin clusters and the frequency of miniature GABAergic postsynaptic currents in cultured hippocampal neurons Enhanced, phosphorylation-dependent gephyrin clustering was also induced in vitro and in vivo with lithium chloride Lithium is a GSK3β inhibitor used therapeutically as mood-stabilizing drug, which underscores the relevance of this posttranslational modification for synaptic plasticity Conversely, we show that gephyrin availability for postsynaptic clustering is limited by Ca(2+)-dependent gephyrin cleavage by the cysteine protease calpain-1 Together, these findings identify gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium

Journal ArticleDOI
TL;DR: Evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system is presented and it is suggested that similar circuit mechanisms may operate in other species and sensory systems.
Abstract: Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABAA receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.

Journal ArticleDOI
TL;DR: This review addresses spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain.

Journal ArticleDOI
TL;DR: It is demonstrated that Dbx1-expressing progenitor cells in the POA give rise to a small but highly diverse cohort of cortical interneurons, with some neurochemical and electrophysiological characteristics that were previously attributed to MGE- or CGE-derived interneURons.
Abstract: GABA-containing (GABAergic) interneurons comprise a very heterogeneous group of cells that are crucial for cortical function. Different classes of interneurons specialize in targeting specific subcellular domains of excitatory pyramidal cells or other interneurons, which provides cortical circuits with an enormous capability for information processing. As in other regions of the CNS, cortical interneuron diversity is thought to emerge from the genetic specification of different groups of progenitor cells within the subpallium. Most cortical interneurons originate from two main regions, the medial and the caudal ganglionic eminences (MGE and CGE, respectively). In addition, it has been shown that progenitors in the embryonic preoptic area (POA) also produce a small population of cortical GABAergic interneurons. Here, we show that the contribution of the POA to the complement of cortical GABAergic interneurons is larger than previously believed. Using genetic fate mapping and in utero transplantation experiments, we demonstrate that Dbx1-expressing progenitor cells in the POA give rise to a small but highly diverse cohort of cortical interneurons, with some neurochemical and electrophysiological characteristics that were previously attributed to MGE- or CGE-derived interneurons. There are, however, some features that seem to distinguish POA-derived interneurons from MGE- or CGE-derived cells, such as their preferential laminar location. These results indicate that the mechanisms controlling the specification of different classes of cortical interneurons might be more complex than previously expected. Together with earlier findings, our results also suggest that the POA generates nearly 10% of the GABAergic interneurons in the cerebral cortex of the mouse.

Journal ArticleDOI
TL;DR: Evidence for GABAergic system dysfunction in FXS patients and Fmr1 KO mouse models alike is summarized, some of the known developmental roles of GABAergic signaling are discussed, as well as the development and refinement of inhibitory GABAergic synapses as a framework for understanding potential causes of mature circuit dysfunction.
Abstract: Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, sensory hypersensitivity, and high incidences of autism spectrum disorders and epilepsy. These phenotypes are suggestive of defects in neural circuit development and imbalances in excitatory glutamatergic and inhibitory GABAergic neurotransmission. While alterations in excitatory synapse function and plasticity are well-established in Fmr1 knockout (KO) mouse models of FXS, a number of recent electrophysiological and molecular studies now identify prominent defects in inhibitory GABAergic transmission in behaviorally relevant forebrain regions such as the amygdala, cortex, and hippocampus. In this review, we summarize evidence for GABAergic system dysfunction in FXS patients and Fmr1 KO mouse models alike. We then discuss some of the known developmental roles of GABAergic signaling, as well as the development and refinement of GABAergic synapses as a framework for understanding potential causes of mature circuit dysfunction. Finally, we highlight the GABAergic system as a relevant target for the treatment of FXS.

Journal ArticleDOI
TL;DR: In this article, the authors discuss relevant research and reports on the GABA(A) receptor in developmental disorders, such as Down syndrome, in healthy aging, and highlight documented aberrations in the GABAergic system in AD.
Abstract: In addition to progressive dementia, Alzheimer's disease (AD) is characterized by increased incidence of seizure activity. Although originally discounted as a secondary process occurring as a result of neurodegeneration, more recent data suggest that alterations in excitatory-inhibitory (E/I) balance occur in AD and may be a primary mechanism contributing AD cognitive decline. In this study, we discuss relevant research and reports on the GABA(A) receptor in developmental disorders, such as Down syndrome, in healthy aging, and highlight documented aberrations in the GABAergic system in AD. Stressing the importance of understanding the subunit composition of individual GABA(A) receptors, investigations demonstrate alterations of particular GABA(A) receptor subunits in AD, but overall sparing of the GABAergic system. In this study, we review experimental data on the GABAergic system in the pathobiology of AD and discuss relevant therapeutic implications. When developing AD therapeutics that modulate GABA it is important to consider how E/I balance impacts AD pathogenesis and the relationship between seizure activity and cognitive decline.

Journal ArticleDOI
TL;DR: It is demonstrated that changes in pyramidal cell activity, sculpted by specific types of inhibitory GABA interneurons, drive the CBF response to whisker stimulation and, further, that metabolically active astrocytes are also required.
Abstract: The whisker-to-barrel cortex is widely used to study neurovascular coupling, but the cellular basis that underlies the perfusion changes is still largely unknown. Here, we identified neurons recruited by whisker stimulation in the rat somatosensory cortex using double immunohistochemistry for c-Fos and markers of glutamatergic and GABAergic neurons, and investigated in vivo their contribution along with that of astrocytes in the evoked perfusion response. Whisker stimulation elicited cerebral blood flow (CBF) increases concomitantly with c-Fos upregulation in pyramidal cells that coexpressed cyclooxygenase-2 (COX-2) and GABA interneurons that coexpressed vasoactive intestinal polypeptide and/or choline acetyltransferase, but not somatostatin or parvalbumin. The evoked CBF response was decreased by blockade of NMDA (MK-801, -37%), group I metabotropic glutamate (MPEP+LY367385, -40%), and GABA-A (picrotoxin, -31%) receptors, but not by GABA-B, VIP, or muscarinic receptor antagonism. Picrotoxin decreased stimulus-induced somatosensory evoked potentials and CBF responses. Combined blockade of GABA-A and NMDA receptors yielded an additive decreasing effect (-61%) of the evoked CBF compared with each antagonist alone, demonstrating cooperation of both excitatory and inhibitory systems in the hyperemic response. Blockade of prostanoid synthesis by inhibiting COX-2 (indomethacin, NS-398), expressed by ∼40% of pyramidal cells but not by astrocytes, impaired the CBF response (-50%). The hyperemic response was also reduced (-40%) after inhibition of astroglial oxidative metabolism or epoxyeicosatrienoic acids synthesis. These results demonstrate that changes in pyramidal cell activity, sculpted by specific types of inhibitory GABA interneurons, drive the CBF response to whisker stimulation and, further, that metabolically active astrocytes are also required.

Journal ArticleDOI
TL;DR: A link between GABA concentration and frequency discrimination in vivo is demonstrated, and the hypothesis that GABAergic mechanisms have an important role to play in sensory discrimination is supported.
Abstract: The neural mechanisms underlying variability in human sensory perception remain incompletely understood In particular, few studies have attempted to investigate the relationship between in vivo measurements of neurochemistry and individuals' behavioral performance Our previous work found a relationship between GABA concentration in the visual cortex and orientation discrimination thresholds (Edden et al, 2009) In the present study, we used magnetic resonance spectroscopy of GABA and psychophysical testing of vibrotactile frequency thresholds to investigate whether individual differences in tactile frequency discrimination performance are correlated with GABA concentration in sensorimotor cortex Behaviorally, individuals showed a wide range of discrimination thresholds ranging from 3 to 76 Hz around the 25 Hz standard These frequency discrimination thresholds were significantly correlated with GABA concentration (r = −058; p < 005) in individuals' sensorimotor cortex, but not with GABA concentration in an occipital control region (r = −004) These results demonstrate a link between GABA concentration and frequency discrimination in vivo, and support the hypothesis that GABAergic mechanisms have an important role to play in sensory discrimination

Journal ArticleDOI
TL;DR: Data from these studies suggest that there is a marked dysregulation of the inhibitory GABA system in the autism brain affecting particular biomarkers localized to specific cell types and lamina likely influencing circuitry and behavior.
Abstract: Autism is a pervasive developmental disorder characterized by repetitive stereotyped behavior, social-emotional deficits, and delayed or absent language abilities. There are known neuropathologies in the autism brain affecting limbic, cerebellar, and cortical structures but the neurochemical profile of affected individuals, revealed in postmortem tissue studies, is only recently emerging. One major component that appears highly impacted in autism is the GABAergic system. It is now apparent that there are widespread significant effects in many distributed regions in the autism brain revealed by histochemical, autoradiographic, and biochemical studies. The key synthesizing enzymes for GABA, glutamic acid decarboxylase type 65 and 67 (GAD65 and GAD67), are decreased in the cerebellum and closer examination of mRNA levels revealed that it is largely due to decreases in Purkinje cells and a subpopulation of larger dentate neurons as measured by in situ hybridization studies. Other cell types had either normal GAD levels (Golgi cells, smaller dentate interneurons, and stellate cells) or increased levels (basket cells). GABA receptor density, number, and protein expression are all decreased in the cerebellum and in select cortical areas. GABA(A) and GABA(B) subunit protein expression was significantly reduced in cerebellum, BA 9 and BA 40. Benzodiazepine binding sites were significantly reduced in the hippocampus and anterior cingulate cortex (BA 24). Taken together, data from these studies suggest that there is a marked dysregulation of the inhibitory GABA system in the autism brain affecting particular biomarkers localized to specific cell types and lamina likely influencing circuitry and behavior.

Journal ArticleDOI
TL;DR: A biophysically realistic and detailed computational model of a cortical circuit including asynchronous release from GABAergic interneurons is developed to investigate how reductions in PV and GABA affect gamma oscillations induced by sensory stimuli, and suggests a mechanism by which reduced GAD67 and PV in fast-spiking interneeurons may contribute to cortical dysfunction in schizophrenia and related psychiatric disorders.
Abstract: Postmortem and functional imaging studies of patients with psychiatric disorders, including schizophrenia, are consistent with a dysfunction of interneurons leading to compromised inhibitory control of network activity. Parvalbumin (PV)-expressing, fast-spiking interneurons interacting with pyramidal neurons generate cortical gamma oscillations (30–80 Hz) that synchronize cortical activity during cognitive processing. In postmortem studies of schizophrenia patients, these interneurons show reduced PV and glutamic acid decarboxylase 67 (GAD67), an enzyme that synthesizes GABA, but the consequences of this downregulation are unclear. We developed a biophysically realistic and detailed computational model of a cortical circuit including asynchronous release from GABAergic interneurons to investigate how reductions in PV and GABA affect gamma oscillations induced by sensory stimuli. Networks with reduced GABA were disinhibited and had altered gamma oscillations in response to stimulation; PV-deficient GABA synapses had increased asynchronous release of GABA, which decreased the level of excitation and reduced gamma-band activity. Combined reductions of PV and GABA resulted in a diminished gamma-band oscillatory activity in response to stimuli, similar to that observed in schizophrenia patients. Our results suggest a mechanism by which reduced GAD67 and PV in fast-spiking interneurons may contribute to cortical dysfunction in schizophrenia and related psychiatric disorders.

Journal ArticleDOI
TL;DR: Findings suggest that the disruption in inhibitory control in the cortex may contribute to the core disturbances of socio-emotional behaviors in autism.

Journal ArticleDOI
TL;DR: In vitro whole-cell recordings and biocytin staining demonstrated the existence of a novel class of neostriatal NPY-expressing GABAergic interneurons that exhibit electrophysiological, neurochemical, and morphological properties strikingly different from those of previously describedNPY-containing, plateau-depolarization low-threshold spike (NPY–PLTS) interneuron types.
Abstract: We investigated the properties of neostriatal neuropeptide Y (NPY)-expressing interneurons in transgenic GFP (green fluorescent protein)-NPY reporter mice. In vitro whole-cell recordings and biocytin staining demonstrated the existence of a novel class of neostriatal NPY-expressing GABAergic interneurons that exhibit electrophysiological, neurochemical, and morphological properties strikingly different from those of previously described NPY-containing, plateau-depolarization low-threshold spike (NPY-PLTS) interneurons. The novel NPY interneuron type (NPY-neurogliaform) differed from previously described NPY-PLTS interneurons by exhibiting a significantly lower input resistance and hyperpolarized membrane potential, regular, nonaccommodating spiking in response to depolarizing current injections, and an absence of plateau depolarizations or low-threshold spikes. NPY-neurogliaform interneurons were also easily distinguished morphologically by their dense, compact, and highly branched dendritic and local axonal arborizations that contrasted sharply with the sparse and extended axonal and dendritic arborizations of NPY-PLTS interneurons. Furthermore, NPY-neurogliaform interneurons did not express immunofluorescence for somatostatin or nitric oxide synthase that was ubiquitous in NPY-PLTS interneurons. IPSP/Cs could only rarely be elicited in spiny projection neurons (SPNs) in paired recordings with NPY-PLTS interneurons. In contrast, the probability of SPN innervation by NPY-neurogliaform interneurons was extremely high, the synapse very reliable (no failures were observed), and the resulting postsynaptic response was a slow, GABA(A) receptor-mediated IPSC that has not been previously described in striatum but that has been elicited from NPY-GABAergic neurogliaform interneurons in cortex and hippocampus. These properties suggest unique and distinctive roles for NPY-PLTS and NPY-neurogliaform interneurons in the integrative properties of the neostriatum.