scispace - formally typeset
Search or ask a question

Showing papers on "GABAergic published in 2014"


Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Not only are PV+ interneurons involved in basic microcircuit functions, but they also play a role in complex network operations, including expansion of dynamic activity range, pattern separation, modulation of place and grid field shapes, phase precession, and gain modulation of sensory responses.
Abstract: The success story of fast-spiking, parvalbumin-positive (PV(+)) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV(+) interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the "small world" of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV(+) interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV(+) interneurons for therapeutic purposes.

899 citations


Journal ArticleDOI
TL;DR: High titres of serum and CSF GABAA receptor antibodies are associated with a severe form of encephalitis with seizures, refractory status epilepticus, or both and are potentially treatable.
Abstract: Summary Background Increasing evidence suggests that seizures and status epilepticus can be immune-mediated. We aimed to describe the clinical features of a new epileptic disorder, and to establish the target antigen and the effects of patients' antibodies on neuronal cultures. Methods In this observational study, we selected serum and CSF samples for antigen characterisation from 140 patients with encephalitis, seizures or status epilepticus, and antibodies to unknown neuropil antigens. The samples were obtained from worldwide referrals of patients with disorders suspected to be autoimmune between April 28, 2006, and April 25, 2013. We used samples from 75 healthy individuals and 416 patients with a range of neurological diseases as controls. We assessed the samples using immunoprecipitation, mass spectrometry, cell-based assay, and analysis of antibody effects in cultured rat hippocampal neurons with confocal microscopy. Findings Neuronal cell-membrane immunoprecipitation with serum of two index patients revealed GABA A receptor sequences. Cell-based assay with HEK293 expressing α1/β3 subunits of the GABA A receptor showed high titre serum antibodies (>1:160) and CSF antibodies in six patients. All six patients (age 3–63 years, median 22 years; five male patients) developed refractory status epilepticus or epilepsia partialis continua along with extensive cortical-subcortical MRI abnormalities; four patients needed pharmacologically induced coma. 12 of 416 control patients with other diseases, but none of the healthy controls, had low-titre GABA A receptor antibodies detectable in only serum samples, five of them also had GAD-65 antibodies. These 12 patients (age 2–74 years, median 26·5 years; seven male patients) developed a broader spectrum of symptoms probably indicative of coexisting autoimmune disorders: six had encephalitis with seizures (one with status epilepticus needing pharmacologically induced coma; one with epilepsia partialis continua), four had stiff-person syndrome (one with seizures and limbic involvement), and two had opsoclonus-myoclonus. Overall, 12 of 15 patients for whom treatment and outcome were assessable had full (three patients) or partial (nine patients) response to immunotherapy or symptomatic treatment, and three died. Patients' antibodies caused a selective reduction of GABA A receptor clusters at synapses, but not along dendrites, without altering NMDA receptors and gephyrin (a protein that anchors the GABA A receptor). Interpretation High titres of serum and CSF GABA A receptor antibodies are associated with a severe form of encephalitis with seizures, refractory status epilepticus, or both. The antibodies cause a selective reduction of synaptic GABA A receptors. The disorder often occurs with GABAergic and other coexisting autoimmune disorders and is potentially treatable. Funding The National Institutes of Health, the McKnight Neuroscience of Brain Disorders, the Fondo de Investigaciones Sanitarias, Fundacio la Marato de TV3, the Netherlands Organisation for Scientific Research (Veni-incentive), the Dutch Epilepsy Foundation.

479 citations


Journal ArticleDOI
TL;DR: The formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission are discussed.
Abstract: The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.

330 citations


Journal ArticleDOI
06 Aug 2014-Neuron
TL;DR: Using viral tracing combined with electrophysiology, it is found that GABA and serotonin neurons in the DR receive excitatory, inhibitory, and peptidergic inputs from the same specific brain regions.

273 citations


Journal ArticleDOI
TL;DR: There is a circuit substrate through which GABAergic PZ neurons can potently trigger SWS and modulate the cortical EEG, regardless of the time of day, and this circuit uniquely and potently initiatedSWS and EEG SWA.
Abstract: Work in animals and humans has suggested the existence of a slow wave sleep (SWS)-promoting/electroencephalogram (EEG)-synchronizing center in the mammalian lower brainstem. Although sleep-active GABAergic neurons in the medullary parafacial zone (PZ) are needed for normal SWS, it remains unclear whether these neurons can initiate and maintain SWS or EEG slow-wave activity (SWA) in behaving mice. We used genetically targeted activation and optogenetically based mapping to examine the downstream circuitry engaged by SWS-promoting PZ neurons, and we found that this circuit uniquely and potently initiated SWS and EEG SWA, regardless of the time of day. PZ neurons monosynaptically innervated and released synaptic GABA onto parabrachial neurons, which in turn projected to and released synaptic glutamate onto cortically projecting neurons of the magnocellular basal forebrain; thus, there is a circuit substrate through which GABAergic PZ neurons can potently trigger SWS and modulate the cortical EEG.

245 citations


Journal ArticleDOI
TL;DR: 3D electron microscopy results indicate that activated microglia can protect the adult brain by migrating to inhibitory synapses and displacing them from cortical neurons.
Abstract: Microglia actively survey the brain microenvironment and play essential roles in sculpting synaptic connections during brain development. While microglial functions in the adult brain are less clear, activated microglia can closely appose neuronal cell bodies and displace axosomatic presynaptic terminals. Microglia-mediated stripping of presynaptic terminals is considered neuroprotective, but the cellular and molecular mechanisms are poorly defined. Using 3D electron microscopy, we demonstrate that activated microglia displace inhibitory presynaptic terminals from cortical neurons in adult mice. Electrophysiological recordings further establish that the reduction in inhibitory GABAergic synapses increased synchronized firing of cortical neurons in γ-frequency band. Increased neuronal activity results in the calcium-mediated activation of CaM kinase IV, phosphorylation of CREB, increased expression of antiapoptotic and neurotrophic molecules and reduced apoptosis of cortical neurons following injury. These results indicate that activated microglia can protect the adult brain by migrating to inhibitory synapses and displacing them from cortical neurons.

237 citations


Journal ArticleDOI
TL;DR: Through different discharge profiles, the cholinergic, GABAergic, and glutamatergic neurons of the LDT, SubLDT, and MPPT thus appear to play distinct roles in promoting W and PS with cortical activation, PS with muscle atonia, or W with muscle tone.
Abstract: Distributed within the laterodorsal tegmental and pedunculopontine tegmental nuclei (LDT and PPT), cholinergic neurons in the pontomesencephalic tegmentum have long been thought to play a critical role in stimulating cortical activation during waking (W) and paradoxical sleep (PS, also called REM sleep), yet also in promoting PS with muscle atonia. However, the discharge profile and thus precise roles of the cholinergic neurons have remained uncertain because they lie intermingled with GABAergic and glutamatergic neurons, which might also assume these roles. By applying juxtacellular recording and labeling in naturally sleeping–waking, head-fixed rats, we investigated the discharge profiles of histochemically identified cholinergic, GABAergic, and glutamatergic neurons in the LDT, SubLDT, and adjoining medial part of the PPT (MPPT) in relation to sleep–wake states, cortical activity, and muscle tone. We found that all cholinergic neurons were maximally active during W and PS in positive correlation with fast (γ) cortical activity, as “W/PS-max active neurons.” Like cholinergic neurons, many GABAergic and glutamatergic neurons were also “W/PS-max active.” Other GABAergic and glutamatergic neurons were “PS-max active,” being minimally active during W and maximally active during PS in negative correlation with muscle tone. Conversely, some glutamatergic neurons were “W-max active,” being maximally active during W and minimally active during PS in positive correlation with muscle tone. Through different discharge profiles, the cholinergic, GABAergic, and glutamatergic neurons of the LDT, SubLDT, and MPPT thus appear to play distinct roles in promoting W and PS with cortical activation, PS with muscle atonia, or W with muscle tone.

236 citations


Journal ArticleDOI
TL;DR: How changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman, and Rett syndromes are discussed, and reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1 is discussed.
Abstract: GABA, the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or NMDA receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as Autism Spectrum Disorders (ASDs) are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders.

232 citations


Journal ArticleDOI
TL;DR: The results suggest that breast cancers exhibit neural characteristics when occupying the brain microenvironment and co-opt GABA as an oncometabolite in breast cancer metastases to the brain.
Abstract: Dispersion of tumors throughout the body is a neoplastic process responsible for the vast majority of deaths from cancer. Despite disseminating to distant organs as malignant scouts, most tumor cells fail to remain viable after their arrival. The physiologic microenvironment of the brain must become a tumor-favorable microenvironment for successful metastatic colonization by circulating breast cancer cells. Bidirectional interplay of breast cancer cells and native brain cells in metastasis is poorly understood and rarely studied. We had the rare opportunity to investigate uncommonly available specimens of matched fresh breast-to-brain metastases tissue and derived cells from patients undergoing neurosurgical resection. We hypothesized that, to metastasize, breast cancers may escape their normative genetic constraints by accommodating and coinhabiting the neural niche. This acquisition or expression of brain-like properties by breast cancer cells could be a malignant adaptation required for brain colonization. Indeed, we found breast-to-brain metastatic tissue and cells displayed a GABAergic phenotype similar to that of neuronal cells. The GABAA receptor, GABA transporter, GABA transaminase, parvalbumin, and reelin were all highly expressed in breast cancer metastases to the brain. Proliferative advantage was conferred by the ability of breast-to-brain metastases to take up and catabolize GABA into succinate with the resultant formation of NADH as a biosynthetic source through the GABA shunt. The results suggest that breast cancers exhibit neural characteristics when occupying the brain microenvironment and co-opt GABA as an oncometabolite.

222 citations


Journal ArticleDOI
TL;DR: Within the central nervous system, descending systems exist to endogenously modulate the authors' perception of pain and a descending PAG-RVM system forms the circuitry that underlies the physiological phenomenon of stress-induced analgesia (SIA).

216 citations


Journal ArticleDOI
TL;DR: A personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders is presented.

Journal ArticleDOI
TL;DR: This study shows that epileptic activities are sustained by excitatory effects of GABA in human peritumoral neocortex, as reported in temporal lobe epilepsies, suggesting that both glutamate and GABA signaling and cellular chloride regulation processes, all also involved in oncogenesis, induce an imbalance between synaptic excitation and inhibition underlying epileptic discharges in glioma patients.
Abstract: Brain gliomas are highly epileptogenic. Excitatory glutamatergic mechanisms are involved in the generation of epileptic activities in the neocortex surrounding gliomas. However, chloride homeostasis is known to be perturbed in glioma cells. Thus, the contribution of g-aminobutyric acidergic (GABAergic) mechanisms that depend on intracellular chloride merits closer study. We studied the occurrence, networks, cells, and signaling basis of epileptic activities in neocortical slices from the peritumoral surgical margin resected around human brain gliomas. Postoperative glioma tissue from 69% of patients spontaneously generated interictal-like discharges, synchronized, with a high-frequency oscillation signature, in superficial layers of neocortex around areas of glioma infiltration. Interictal-like events depended both on glutamatergic AMPA receptor–mediated transmission and on depolarizing GABAergic signaling. GABA released by interneurons depolarized 65% of pyramidal cells, in which chloride homeostasis was perturbed because of changes in expression of neuronal chloride cotransporters: KCC2 (K-Cl cotransporter 2) was reduced by 42% and expression of NKCC1 (Na-K-2Cl cotransporter 1) increased by 144%. Ictal-like activities were initiated by convulsant stimuli exclusively in these epileptogenic areas. This study shows that epileptic activities are sustained by excitatory effects of GABA in human peritumoral neocortex, as reported in temporal lobe epilepsies, suggesting that both glutamate and GABA signaling and cellular chloride regulation processes, all also involved in oncogenesis as already shown, induce an imbalance between synaptic excitation and inhibition underlying epileptic discharges in glioma patients. Thus, the control of chloride in neurons and glioma cells may provide a therapeutic target for patients with epileptogenic gliomas.

Journal ArticleDOI
TL;DR: It is found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula, and minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalicuclei.
Abstract: The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral-vector-mediated cell-type-specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non-tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non-TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA-independent functions than previously recognized.

Journal ArticleDOI
TL;DR: The diversity in the magnitude of tonic GABAergic inhibition in various brain regions and cell types is reviewed, and the impact on neuronal excitability in different neuronal circuits is highlighted.
Abstract: The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and results in a transient, rapidly desensitizing GABAergic conductance; whereas, tonic inhibition is mediated by extrasynaptic receptors with a high affinity for GABA and results in a persistent GABAergic conductance. The specific functions of tonic versus phasic GABAergic inhibition in different cell types and the impact on specific neural circuits are only beginning to be unraveled. Here we review the diversity in the magnitude of tonic GABAergic inhibition in various brain regions and cell types, and highlight the impact on neuronal excitability in different neuronal circuits. Further, we discuss the relevance of tonic inhibition in various physiological and pathological contexts as well as the potential of targeting these receptor subtypes for treatment of diseases, such as epilepsy.

Journal ArticleDOI
TL;DR: Accumulating evidence suggests that neuronal ion regulation is highly plastic, thereby contributing to the multiple roles ascribed to GABAergic signaling during epileptogenesis and epilepsy.

Journal ArticleDOI
TL;DR: It is proposed that activity-dependent Cl− accumulation subverts the actions of PV+ interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures.
Abstract: Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs) Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl−) reversal potential The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV+) interneurons Channelrhodopsin-2-mediated activation of PV+ interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network Finally, archaerhodopsin-mediated selective silencing of PV+ interneurons reduced the occurrence of ADs during the clonic phase Therefore, we propose that activity-dependent Cl− accumulation subverts the actions of PV+ interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures

Journal ArticleDOI
TL;DR: It is confirmed that Dlxi12b-labeled projections from the mPFC to the nucleus accumbens (NAcc) release GABA and do not corelease glutamate, and optogenetic stimulation of these neurons induces avoidance behavior in a real-time place preference task, suggesting that these long-range projecting GABAergic neurons can transmit aversive signals.
Abstract: GABAergic projections from the neocortex to subcortical structures have been poorly characterized. Using Dlxi12b–Cre mice, we found anatomical evidence for GABAergic neurons that project from the mouse medial prefrontal cortex (mPFC) to multiple subcortical targets. We used a combination of patch-clamp electrophysiology, optogenetics, and pharmacology to confirm that Dlxi12b-labeled projections from the mPFC to the nucleus accumbens (NAcc) release GABA and do not corelease glutamate. Furthermore, optogenetic stimulation of these GABAergic projections from mPFC to NAcc induces avoidance behavior in a real-time place preference task, suggesting that these long-range projecting GABAergic neurons can transmit aversive signals. Finally, we found evidence for heterogeneous histochemical and/or electrophysiological properties of long-range projecting GABAergic neurons in the mPFC. Some of these neurons were labeled in parvalbumin–Cre and vasoactive intestinal peptide–Cre mice. We also used a novel intersectional targeting strategy to label GABAergic neurons in the mPFC that project to NAcc and found that these neurons have fast-spiking properties and express parvalbumin. These results define possible functions and properties for a class of long-range projecting GABAergic neurons in the neocortex.

Journal ArticleDOI
02 Apr 2014-Neuron
TL;DR: Optogenetics and whole-cell recordings in brain slices delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

Journal ArticleDOI
TL;DR: This study indicates that autism is a developmental synaptic disorder showing imbalance in GABAergic and glutamatergic synapses as a consequence of neuroinflammation.
Abstract: Autism spectrum disorder (ASD) is characterized by three core behavioral domains: social deficits, impaired communication, and repetitive behaviors. Glutamatergic/GABAergic imbalance has been found in various preclinical models of ASD. Additionally, autoimmunity immune dysfunction, and neuroinflammation are also considered as etiological mechanisms of this disorder. This study aimed to elucidate the relationship between glutamatergic/ GABAergic imbalance and neuroinflammation as two recently-discovered autism-related etiological mechanisms. Twenty autistic patients aged 3 to 15 years and 19 age- and gender-matched healthy controls were included in this study. The plasma levels of glutamate, GABA and glutamate/GABA ratio as markers of excitotoxicity together with TNF-α, IL-6, IFN-γ and IFI16 as markers of neuroinflammation were determined in both groups. Autistic patients exhibited glutamate excitotoxicity based on a much higher glutamate concentration in the autistic patients than in the control subjects. Unexpectedly higher GABA and lower glutamate/GABA levels were recorded in autistic patients compared to control subjects. TNF-α and IL-6 were significantly lower, whereas IFN-γ and IFI16 were remarkably higher in the autistic patients than in the control subjects. Multiple regression analysis revealed associations between reduced GABA level, neuroinflammation and glutamate excitotoxicity. This study indicates that autism is a developmental synaptic disorder showing imbalance in GABAergic and glutamatergic synapses as a consequence of neuroinflammation.

Journal ArticleDOI
TL;DR: This review focuses on current understanding of the different roles of inhibitory GABAergic non-pyramidal cell subtypes in cortical functions.

Journal ArticleDOI
21 May 2014-Neuron
TL;DR: It is shown that behavioral and network states differentiate the activities of bistratified and O-LM cells in freely moving rats, and peptide/GABA-releasing interneurons' firing patterns during behavior are unknown.

Journal ArticleDOI
TL;DR: Findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients, and a (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.

Journal ArticleDOI
TL;DR: The different ways to modulate GABAergic transmission normally at work are discussed both during physiological and pathological conditions, to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Abstract: During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.

Journal ArticleDOI
TL;DR: It is shown that a unique and well-defined population of CB1 receptors, namely that located on glutamatergic terminals, plays a key neuroprotective role in the mouse brain, and this finding opens a new conceptual view on how the CB1 receptor evokes neuroprotection, and provides preclinical support for improving the development of cannabinoid-based neuroProtective therapies.
Abstract: The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.

Journal ArticleDOI
TL;DR: Findings emphasize that GABAergic inhibitory interneurons in the PFC undergo a dynamic, cell type-specific remodeling during adolescence and provide a developmental framework for understanding alterations in GABAergic circuits that occur in psychiatric disorders.
Abstract: Determining the normal developmental trajectory of individual GABAergic components in the prefrontal cortex (PFC) during the adolescent transition period is critical because local GABAergic interneurons are thought to play an important role in the functional maturation of cognitive control that occurs in this developmental window. Based on the expression of calcium-binding proteins, three distinctive subtypes of interneurons have been identified in the PFC: parvalbumin (PV)-, calretinin (CR)-, and calbindin (CB)-positive cells. Using biochemical and histochemical measures, we found that the protein level of PV is lowest in juveniles [postnatal days (PD) 25–35] and increases during adolescence (PD 45–55) to levels similar to those observed in adulthood (PD 65–75). In contrast, the protein expression of CR is reduced in adults compared to juvenile and adolescent animals, whereas CB levels remain mostly unchanged across the developmental window studied here. Semi-quantitative immunostaining analyses revealed that the periadolescent upregulation of PV and the loss of the CR signal appear to be attributable to changes in PV- and CR-positive innervation, which are dissociable from the trajectory of PV- and CR-positive cell number. At the synaptic level, our electrophysiological data revealed that a developmental facilitation of spontaneous glutamatergic synaptic inputs onto PV-positive/fast-spiking interneurons parallels the increase in prefrontal PV signal during the periadolescent transition. In contrast, no age-dependent changes in glutamatergic transmission were observed in PV-negative/non fast-spiking interneurons. Together, these findings emphasize that GABAergic inhibitory interneurons in the PFC undergo a dynamic, cell type-specific remodeling during adolescence and provide a developmental framework for understanding alterations in GABAergic circuits that occur in psychiatric disorders.

Journal ArticleDOI
TL;DR: The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges and the key inhibitory role of axo-axonic cells is demonstrated.
Abstract: The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.

Journal ArticleDOI
TL;DR: A critical impact of prenatal immune-related insults on long-term GABAergic changes relevant to neuropsychiatric disorders with prenatal infectious etiologies, especially for those with delayed onset in early adulthood is emphasized.
Abstract: Neuronal dysfunctions in the cortical GABAergic system have been widely documented in neuropsychiatric disorders with prenatal infectious etiologies, including schizophrenia. At least some of these abnormalities may stem from transcriptional impairments in the GABAergic transcriptome. However, the extent to which prenatal exposure to immune challenge can induce long-term alterations in GABAergic gene transcription remains largely elusive. Here, we use an established mouse model of prenatal immune activation induced by maternal gestational administration of the viral mimetic poly(I:C) (= polyriboinosinic-polyribocytidilic acid) to demonstrate that prenatal immune activation causes maturation-dependent alterations in prefrontal GABAergic gene expression. The spectrum of abnormalities included altered mRNA expression levels of enzymes regulating γ-aminobutyric acid (GABA) biosynthesis (glutamic acid decarboxylase 65-kDa [GAD65] and GAD67), vesicular GABA transporter (VGAT), alpha-subunits of the GABA(A) receptor (α2, α3, α4, and α5), and the chloride transporters sodium-potassium-chloride cotransporter 1 and potassium-chloride cotransporter 2. Additional western blot analyses confirmed the deficits in prefrontal GAD65/GAD67 and VGAT expression at the protein level. Intriguingly, the prefrontal GABAergic transcriptome was found to be more strongly affected in adult compared with peripubertal offspring born to immune-challenged mothers, and these age-dependent changes in GABAergic gene expression were paralleled by an adult onset of working memory deficiency. Collectively, our data emphasize a critical impact of prenatal immune-related insults on long-term GABAergic changes relevant to neuropsychiatric disorders with prenatal infectious etiologies, especially for those with delayed onset in early adulthood.

Journal ArticleDOI
TL;DR: Developmental depletion of astrocytic GABABR1/2 signaling suppressed mechanosensory-induced seizure activity in mutants with hyperexcitable neurons and highlight the importance of precise regulation ofAstrocytes actively modulate GAT expression via metabotropic GABA receptor signaling.
Abstract: Uptake of the neurotransmitter GABA by transporters called GATs is known to influence neuronal GABAergic tone. Here Muthukumar et al. show that the wave of synaptogenesis in Drosophila brains occurs during the second half of pupal development in an astrocyte-dependent manner. The study also shows that the upregulation of GAT during this process requires astrocytic metabotropic GABA receptors, and this pathway mediates mechanosensory-induced seizure activity in GABAergic mutants with hyperexcitable neurons.

Journal ArticleDOI
TL;DR: It is found that type 3 IS (IS3) cells that coexpress the vasoactive intestinal polypeptide and calretinin contact several distinct types of interneurons within the hippocampal CA1 stratum oriens/alveus (O/A), with preferential innervation of oriens-lacunosum moleculare cells (OLMs) through dendritic synapses.
Abstract: In cortical networks, different types of inhibitory interneurons control the activity of glutamatergic principal cells and GABAergic interneurons. Principal neurons represent the major postsynaptic target of most interneurons; however, a population of interneurons that is dedicated to the selective innervation of GABAergic cells exists in the CA1 area of the hippocampus. The physiological properties of these cells and their functional relevance for network computations remain unknown. Here, we used a combination of dual simultaneous patch-clamp recordings and targeted optogenetic stimulation in acute mouse hippocampal slices to examine how one class of interneuron-specific (IS) cells controls the activity of its GABAergic targets. We found that type 3 IS (IS3) cells that coexpress the vasoactive intestinal polypeptide (VIP) and calretinin contact several distinct types of interneurons within the hippocampal CA1 stratum oriens/alveus (O/A), with preferential innervation of oriens-lacunosum moleculare cells (OLMs) through dendritic synapses. In contrast, VIP-positive basket cells provided perisomatic inhibition to CA1 pyramidal neurons with the asynchronous GABA release and were not connected with O/A interneurons. Furthermore, unitary IPSCs recorded at IS3–OLM synapses had a small amplitude and low release probability but summated efficiently during high-frequency firing of IS3 interneurons. Moreover, the synchronous generation of a single spike in several IS cells that converged onto a single OLM controlled the firing rate and timing of OLM interneurons. Therefore, dendritic inhibition originating from IS cells is needed for the flexible activity-dependent recruitment of OLM interneurons for feedback inhibition.

Journal ArticleDOI
TL;DR: Cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated are summarized and reviewed.
Abstract: Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits.