scispace - formally typeset
Search or ask a question

Showing papers on "GABAergic published in 2016"


Journal ArticleDOI
20 Jul 2016-Neuron
TL;DR: Current understanding of neocortical interneuron diversity and the properties that distinguish cell types are reviewed and it is illustrated how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.

1,358 citations


Journal ArticleDOI
15 Jun 2016-Neuron
TL;DR: It is shown that the GABAergic component of the LH-VTA pathway supports positive reinforcement and place preference, while the glutamatergic component mediates place avoidance, and photoactivation of these projections modulates other behaviors, such as social interaction and perseverant investigation of a novel object.

281 citations


Journal ArticleDOI
TL;DR: A direct link between GABA signaling and autistic perceptual symptomatology is presented and a disruption in inhibitory signaling in the autistic brain is suggested, suggesting a translational path between animal and human models of the condition.

281 citations


Journal ArticleDOI
TL;DR: Recent advances in understanding of how somatostatin-expressing neurons can control network activity are reviewed, with specific reference to how this is constrained by their anatomical and electrophysiological properties.
Abstract: Somatostatin-expressing GABAergic neurons constitute a major class of inhibitory neurons in the mammalian cortex and are characterized by dense wiring into the local network and high basal firing activity that persists in the absence of synaptic input. This firing provides both GABA type A receptor (GABAAR)- and GABABR-mediated inhibition that operates at fast and slow timescales. The activity of somatostatin-expressing neurons is regulated by brain state, during learning and in rewarded behaviour. Here, we review recent advances in our understanding of how this class of cells can control network activity, with specific reference to how this is constrained by their anatomical and electrophysiological properties.

261 citations


Journal ArticleDOI
TL;DR: An overview of the involvement of Aβ, tau and apolipoprotein E4 (apoE4), the major genetic risk factor in late-onset AD (LOAD), in GABAergic neurotransmission and the potential of modulating the GABAergic function as AD therapy is provided.
Abstract: Alzheimer's disease (AD) is characterized pathologically by the deposition of β-amyloid peptides (Aβ) and the accumulation of neurofibrillary tangles (NFTs) composed of hyper-phosphorylated tau. Regardless of the pathological hallmarks, synaptic dysfunction is widely accepted as a causal event in AD. Of the two major types of synapses in the central nervous system (CNS): glutamatergic and GABAergic, which provide excitatory and inhibitory outputs respectively, abundant data implicate an impaired glutamatergic system during disease progression. However, emerging evidence supports the notion that disrupted default neuronal network underlies impaired memory, and that alterations of GABAergic circuits, either plays a primary role or as a compensatory response to excitotoxicity, may also contribute to AD by disrupting the overall network function. The goal of this review is to provide an overview of the involvement of Aβ, tau and apolipoprotein E4 (apoE4), the major genetic risk factor in late-onset AD (LOAD), in GABAergic neurotransmission and the potential of modulating the GABAergic function as AD therapy.

186 citations


Journal ArticleDOI
TL;DR: The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc), but the VTA also has glutamatergic neurons that project to nAcc, and the mesoaccumbens glutamatorgic pathways are reported on, which are the first glutamaters to be shown to mediate aversion instead of reward.
Abstract: The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens glutamatergic pathway remains unknown. Here we report that nAcc photoactivation of mesoaccumbens glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens glutamatergic fibers lack GABA, the aversion evoked by their photoactivation depended on glutamate- and GABA-receptor signaling, and not on dopamine-receptor signaling. We found that mesoaccumbens glutamatergic fibers established multiple asymmetric synapses on single parvalbumin GABAergic interneurons and that nAcc photoactivation of these fibers drove AMPA-mediated cellular firing of parvalbumin GABAergic interneurons. These parvalbumin GABAergic interneurons in turn inhibited nAcc medium spiny output neurons, thereby controlling inhibitory neurotransmission in nAcc. To our knowledge, the mesoaccumbens glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin GABAergic interneurons.

167 citations


01 Jan 2016
TL;DR: In this article, a double immunolabeling procedure was used to deter- mine the colocalization of Rein with neuropeptides and Ca2+- binding proteins.
Abstract: Reelin (Reln) is a protein with some struc- tural analogies with other extracellular matrix proteins that functions in the regulation of neuronal migration during the development of cortical laminated structures. In the cortex of adult animals, Rein is expressed primarily in y-aminobutyric acid (GABA)ergic neurons and is secreted into perineuronal nets. However, only 50-60% of GABAergic interneurons ex- press Reln. We have characterized this subpopulation of cortical GABAergic neurons that expresses Reln by using two strategies: (i) a double immunolabeling procedure to deter- mine the colocalization of Reln with neuropeptides and Ca2+- binding proteins and (ii) a combination of Golgi staining and Reln immunolabeling to determine the morphology of the rat cortical cells that store Reln. Many interneurons that express Neuropeptide Y (NPY) or somatostatin (but none of those that express parvalbumin) are Reln-immunopositive. A small pop- ulation of calbindin-positive interneurons and very few cal- retinin-positive cells express Reln immunopositivity. Golgi staining revealed that layer I horizontal cells, layer II-V bitufted neurons, and some deep cortical layer Martinotti cells express Reln. Basket and chandelier cells are often immunopositive to parvalbumin, but never to Reln. Although Reln is secreted by GABAergic neurons, its target are not the GABA receptors, but rather may be extrasynaptically located in perineuronal nets and concerned with the modulation of neuronal plasticity. Dabl, the target adapter protein that presumably mediates transcription regulation via the extra- synaptic actions of Reln, is expressed predominantly in pyra- midal neurons, but it can also be detected in a small popu- lation of GABAergic neurons that are neither horizontal nor bitufted neurons.

149 citations


Journal ArticleDOI
TL;DR: A population of VLPO-projecting neurons in the LH that express the vesicular GABA transporter (VGAT; a marker for GABA-releasing neurons) is described, which may play a particularly important role in sleep-wake switching.

141 citations


Journal ArticleDOI
TL;DR: Leptin receptor-expressing GABAergic vDMH neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior.
Abstract: Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues before ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the preconsummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor-expressing GABAergic vDMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, leptin receptor-expressing GABAergic vDMH neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior.

140 citations


Journal ArticleDOI
06 Apr 2016-Neuron
TL;DR: It is found that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons.

129 citations


Journal ArticleDOI
TL;DR: A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Abstract: The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.

Journal ArticleDOI
TL;DR: The N-methyl-D-aspartate receptor antagonist ketamine can improve major depressive disorder (MDD) within hours and clinical improvement correlated with 90-min norketamine concentration, but no other measures were found.
Abstract: The N-methyl-D-aspartate receptor antagonist ketamine can improve major depressive disorder (MDD) within hours. To evaluate the putative role of glutamatergic and GABAergic systems in ketamine's antidepressant action, medial prefrontal cortical (mPFC) levels of glutamate+glutamine (Glx) and γ-aminobutyric acid (GABA) were measured before, during, and after ketamine administration using proton magnetic resonance spectroscopy. Ketamine (0.5 mg kg(-1) intravenously) was administered to 11 depressed patients with MDD. Glx and GABA mPFC responses were measured as ratios relative to unsuppressed voxel tissue water (W) successfully in 8/11 patients. Ten of 11 patients remitted (50% reduction in 24-item Hamilton Depression Rating Scale and total score ⩽10) within 230 min of commencing ketamine. mPFC Glx/W and GABA/W peaked at 37.8%±7.5% and 38.0%±9.1% above baseline in ~26 min. Mean areas under the curve for Glx/W (P=0.025) and GABA/W (P=0.005) increased and correlated (r=0.796; P=0.018). Clinical improvement correlated with 90-min norketamine concentration (df=6, r=-0.78, P=0.023), but no other measures.

Journal ArticleDOI
TL;DR: This intervention rescues cocaine-evoked aversive states and prevents stress-induced reinstatement, used to model relapse, and identifies diminished inhibitory transmission at EPN-to-LHb GABA/glutamate synapses as a mechanism contributing to the relapsing feature of addictive behavior.
Abstract: Cocaine withdrawal produces aversive states and vulnerability to relapse, hallmarks of addiction. The lateral habenula (LHb) encodes negative stimuli and contributes to aversive withdrawal symptoms. However, it remains unclear which inputs to LHb promote this and what the consequences are for relapse susceptibility. We report, using rabies-based retrolabeling and optogenetic mapping, that the entopeduncular nucleus (EPN, the mouse equivalent of the globus pallidus interna) projects to an LHb neuronal subset innervating aversion-encoding midbrain GABA neurons. EPN-to-LHb excitatory signaling is limited by GABAergic cotransmission. This inhibitory component decreases during cocaine withdrawal as a result of reduced presynaptic vesicular GABA transporter (VGAT). This shifts the EPN-to-LHb GABA/glutamate balance, disinhibiting EPN-driven LHb activity. Selective virally mediated VGAT overexpression at EPN-to-LHb terminals during withdrawal normalizes GABAergic neurotransmission. This intervention rescues cocaine-evoked aversive states and prevents stress-induced reinstatement, used to model relapse. This identifies diminished inhibitory transmission at EPN-to-LHb GABA/glutamate synapses as a mechanism contributing to the relapsing feature of addictive behavior.

Journal ArticleDOI
03 Feb 2016-Neuron
TL;DR: A role is identified for L5b SST+ interneurons in the control of SSNs in the early postnatal neocortex using laser-scanning photostimulation to identify an early transient circuit between these cells and L4 spiny stellates (SSNs) that disappears by the end of the L4 critical period.

Journal ArticleDOI
TL;DR: In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine.
Abstract: Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies.

Journal ArticleDOI
TL;DR: The results suggest that chronic mild stress impairs GABA release and uptake by upregulating miRNAs and downregulating m RNAs and proteins, which may constitute the subcellular and molecular mechanisms for the lowered GABA tone in major depression.
Abstract: Major depression is a prevalent emotion disorder. Chronic stressful life in genetically susceptible individuals is presumably a major etiology that leads to neuron and synapse atrophy in the limbic system. Molecular mechanisms underlying the pathological changes remain elusive. Mice were treated by chronic unpredictable mild stress (CUMS) until they demonstrated depression-like behavior. GABA release in the medial prefrontal cortex was evaluated by cell electrophysiology and imaging. Molecular profiles related to GABA synthesis and uptake were investigated by the high-throughput sequencings of microRNAs and mRNAs as well as western blot analysis in this cortical area. In CUMS-induced depression mice, there appear the decreases in the innervation and function of GABAergic axons and in the levels of mRNAs and proteins of glutamate decarboxylase-67, vesicular GABA transporter and GABA transporter-3. miRNA-15b-5p, miRNA-144-3p, miRNA-582-5p and miRNA-879-5p that directly downregulate such mRNAs increase in this cortex. Our results suggest that chronic mild stress impairs GABA release and uptake by upregulating miRNAs and downregulating mRNAs and proteins, which may constitute the subcellular and molecular mechanisms for the lowered GABA tone in major depression.

Journal ArticleDOI
TL;DR: This data is the first to demonstrate the direct link of nuclear morphology and SOC calcium deregulation to mutant huntingtin protein expression in iPSCs-derived neurons with disease-mimetic hallmarks, providing a valuable tool for identification of candidate anti-HD drugs.
Abstract: Background Huntington’s disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms.

Journal ArticleDOI
TL;DR: A novel optogenetic approach using a mouse knock-in line with conditional expression of channelrhodopsin-2 in GABAergic interneurons shows a developmental excitatory-to-inhibitory switch in the actions of GABA on glutamatergic neurons in neocortical and hippocampal slices from neonatal mouse pups in vitro, but also reveals inhibitory GABA actions in the Neonatal mouse neocortex and hippocampus in vivo.
Abstract: To investigate excitatory and inhibitory GABA actions in cortical neuronal networks, we present a novel optogenetic approach using a mouse knock-in line with conditional expression of channelrhodopsin-2 (ChR2) in GABAergic interneurons. During whole-cell recordings from hippocampal and neocortical slices from postnatal day (P) 2–P15 mice, photostimulation caused depolarization and excitation of interneurons and evoked barrages of postsynaptic GABAergic currents. Excitatory/inhibitory GABA actions on pyramidal cells were assessed by monitoring the alteration in the frequency of EPSCs during photostimulation of interneurons. We found that in slices from P2–P8 mice, photostimulation evoked an increase in EPSC frequency, whereas in P9–P15 mice the response switched to a reduction in EPSC frequency, indicating a developmental excitatory-to-inhibitory switch in GABA actions on glutamatergic neurons. Using a similar approach in urethane-anesthetized animals in vivo , we found that photostimulation of interneurons reduces EPSC frequency at ages P3–P9. Thus, expression of ChR2 in GABAergic interneurons of mice enables selective photostimulation of interneurons during the early postnatal period, and these mice display a developmental excitatory-to-inhibitory switch in GABA action in cortical slices in vitro , but so far show mainly inhibitory GABA actions on spontaneous EPSCs in the immature hippocampus and neocortex in vivo . SIGNIFICANCE STATEMENT We report a novel optogenetic approach for investigating excitatory and inhibitory GABA actions in mice with conditional expression of channelrhodopsin-2 in GABAergic interneurons. This approach shows a developmental excitatory-to-inhibitory switch in the actions of GABA on glutamatergic neurons in neocortical and hippocampal slices from neonatal mouse pups in vitro , but also reveals inhibitory GABA actions in the neonatal mouse neocortex and hippocampus in vivo .

Journal ArticleDOI
07 Mar 2016-eLife
TL;DR: This work investigated sleep in Caenorhabditis elegans, which is induced by the single sleep-active neuron RIS, and found that the transcription factor LIM-6, which specifying GABAergic function, in parallel determines sleep neuron function through the expression of APTF-1, which specifies the expressionof FLP-11 neuropeptides.
Abstract: Sleep is an essential behavioral state. It is induced by conserved sleep-active neurons that express GABA. However, little is known about how sleep neuron function is determined and how sleep neurons change physiology and behavior systemically. Here, we investigated sleep in Caenorhabditis elegans, which is induced by the single sleep-active neuron RIS. We found that the transcription factor LIM-6, which specifies GABAergic function, in parallel determines sleep neuron function through the expression of APTF-1, which specifies the expression of FLP-11 neuropeptides. Surprisingly FLP-11, and not GABA, is the major component that determines the sleep-promoting function of RIS. FLP-11 is constantly expressed in RIS. At sleep onset RIS depolarizes and releases FLP-11 to induce a systemic sleep state.

Journal ArticleDOI
TL;DR: Optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness and illustrates the utility of “opto-dialysis” for dissecting the complex brain circuitry underlying behavior.
Abstract: Understanding the control of sleep–wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep–wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that “selective” stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) ([Yang et al., 2014][1]). Thus, the wake-promoting effect of “selective” optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel “opto-dialysis” probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of “opto-dialysis” for dissecting the complex brain circuitry underlying behavior. [1]: #ref-39

Journal ArticleDOI
TL;DR: The results implicate GABAergic and glutamatergic systems in the mechanism of action of rTMS for major depression, warranting further investigation in larger samples.
Abstract: Background: GABAergic and glutamatergic neurotransmitter systems are central to the pathophysiology of depression and are potential targets of repetitive transcranial magnetic stimulation (rTMS). We assessed the effect of 10-Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC) of patients with major depressive disorder on the levels of medial prefrontal cortex (MPFC) γ-aminobutyric acid (GABA) and the combined resonance of glutamate and glutamine (Glx) as assessed in vivo with proton magnetic resonance spectroscopy ( 1 H MRS). Methods: Currently depressed individuals between the ages of 23 and 68 years participated in a 5-week naturalistic, open-label treatment study of rTMS, with 1 H MRS measurements of MPFC GABA and Glx levels at baseline and following 5 weeks of the rTMS intervention. We applied rTMS pulses over the left DLPFC at 10 Hz and 80%–120% of motor threshold for 25 daily sessions, with each session consisting of 3000 pulses. We assessed therapeutic response using the 24-item Hamilton Rating Scale for Depression (HAMD24). The GABA and Glx levels are expressed as ratios of peak areas relative to the area of the synchronously acquired and similarly fitted unsuppressed voxel water signal (W). Results: Twenty-three currently depressed individuals (7 men) participated in the study. GABA/W in the MPFC increased 13.8% (p = 0.013) in all depressed individuals. There were no significant effects of rTMS on Glx/W. GABA/W and Glx/W were highly correlated in severely depressed patients at baseline but not after TMS. Limitations: The primary study limitations are the open-label design and the inclusion of participants currently taking stable regimens of antidepressant medications. Conclusion: These results implicate GABAergic and glutamatergic systems in the mechanism of action of rTMS for major depression, warranting further investigation in larger samples.

Journal ArticleDOI
TL;DR: A paradoxical involvement of GABAergic networks is required for the initiation of focal seizures characterized by low‐voltage fast activity, which represents the most common seizure‐onset pattern in focal epilepsies.
Abstract: Abnormally enhanced glutamatergic excitation is commonly believed to mark the onset of a focal seizure. This notion, however, is not supported by firm evidence, and it will be challenged here. A general reduction of unit firing has been indeed observed in association with low-voltage fast activity at the onset of seizures recorded during presurgical intracranial monitoring in patients with focal, drug-resistant epilepsies. Moreover, focal seizures in animal models start with increased γ-aminobutyric acid (GABA)ergic interneuronal activity that silences principal cells. In vitro studies have shown that synchronous activation of GABAA receptors occurs at seizure onset and causes sizeable elevations in extracellular potassium, thus facilitating neuronal recruitment and seizure progression. A paradoxical involvement of GABAergic networks is required for the initiation of focal seizures characterized by low-voltage fast activity, which represents the most common seizure-onset pattern in focal epilepsies.

Posted ContentDOI
10 May 2016-bioRxiv
TL;DR: A comprehensive map of neurons in the C. elegans nervous system that contain the neurotransmitter GABA is reported, revealing twice as many GABA-positive neuron classes as previously reported.
Abstract: The nervous system of the nematode C. elegans is the only nervous system with a complete parts list and a complete wiring diagram. Neurotransmitter maps are important complements to such anatomical maps and represent an invaluable resource that will help to understand how signals are transmitted throughout the nervous system and how a nervous system is developmentally patterned. In this resource paper, we report a comprehensive map of neurons in the hermaphroditic and male C. elegans nervous system that contain the neurotransmitter GABA, the most prominent inhibitory neurotransmitter in mammalian nervous systems. We reveal twice as many GABA-positive neuron classes as previously reported, several of them also cotransmitting acetylcholine. We define previously unknown glia-like cells that reuptake GABA, as well as 'GABA reuptake neurons' which do not synthesize GABA but take it up from the extracellular environment. One GABA reuptake neuron type may clear GABA thereby possibly modulating GABAergic neurotransmission ('GABA clearance' neuron), while another GABA reuptake neuron type may re-release GABA (termed 'GABA recycling' neuron). We used the map of GABA-positive neurons for a comprehensive analysis of transcriptional regulators that define the GABA phenotype. We show that nine transcription factors operate in specific combinations to control GABAergic identity of most GABAergic neuron classes. Among these factors is elt-1, the C. elegans ortholog of GATA2/3, a selector gene of GABAergic identity of several distinct types of GABAergic neurons in vertebrates. Other factors that control GABAergic identity include the Tlx-type nuclear hormone receptor nhr-67 which controls the identity of four distinct GABAergic neuron classes, in which, depending on neuron type, nhr-67 cooperates with three different types of homeobox genes. We also identified homeobox genes that specify GABA recycling neurons and GABA clearance neurons. The regulators of GABAergic neuron identity do not only specify neurotransmitter identity, but multiple other identity features as well. We synthesize our findings of specification of GABAergic neurons with previous reports on the specification of glutamatergic and cholinergic neurons into a nervous system-wide regulatory map which defines neurotransmitter specification mechanisms for more than half of all neuron classes in C. elegans.

Journal ArticleDOI
TL;DR: This work has identified a set of genetic factors that could robustly induce human pluripotent stem cells into GABAergic neurons (iGNs) with high efficiency and demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6-8 weeks.

Journal ArticleDOI
01 Feb 2016-Brain
TL;DR: An increase in phasic GABA signalling during the repair phase that enhances plasticity-related recovery in mice is revealed, suggesting therapeutic potential.
Abstract: Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem's potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery.

Journal ArticleDOI
TL;DR: It is suggested that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis.
Abstract: Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. SIGNIFICANCE STATEMENT We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress regulation of anxiogenesis in rats. We demonstrate a nongenomic glucocorticoid induction of long-lasting suppression of synaptic inhibition that is mediated by retrograde endocannabinoid release at GABA synapses. The rapid glucocorticoid-induced endocannabinoid suppression of synaptic inhibition is initiated by a membrane-associated glucocorticoid receptor in BLA principal neurons. We show that acute stress increases anxiety-like behavior via an endocannabinoid-dependent mechanism centered in the BLA. The stress-induced endocannabinoid modulation of synaptic transmission in the BLA contributes, therefore, to the stress regulation of anxiety, and may play a role in anxiety disorders of the amygdala.

Journal ArticleDOI
TL;DR: A concomitant modulation of the GABAergic and NE system, as induced by tVNS, affects inhibitory control processes, but only when working memory processes play an important role for inhibitorycontrol.

Journal ArticleDOI
TL;DR: It is reported that chemogenetic activation of this LH GABAergic population in vGat-ires-cre mice increased consummatory behavior directed at any available stimulus, including those entailing calories, those that do not, and those lacking biological relevance.

Journal ArticleDOI
TL;DR: Evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes are reviewed to support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Abstract: The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.

Journal ArticleDOI
TL;DR: Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.
Abstract: Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.