scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that volleys in fibres descending from the rostral ventromedial medulla may evoke GABA release from raphe-spinal terminals, and the released GABA might play a crucial, as yet mostly unidentified, role in the inhibition of nociceptive information processing in the dorsal horn of the spinal cord.

173 citations

Journal ArticleDOI
TL;DR: In rat, cat and monkey, many GABAergic neurons in the subcortical white matter and certain cortical layers are also immunoreactive for the neuropeptide somatostatin, suggesting a high rate of metabolic activity.

173 citations

Journal ArticleDOI
TL;DR: Valproic acid (VPA) may disrupt a balance between excitatory and inhibitory neuronal activities through its epigenetic effect.

173 citations

Journal ArticleDOI
TL;DR: The distinct localization of GABA BRs relative to synaptic sites in the cerebellum and ventrobasal thalamus suggests that GABABRs differentially regulate activity of different neuronal populations.
Abstract: Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) are involved in modulation of synaptic transmission and activity of cerebellar and thalamic neurons. We used subtype-specific antibodies in pre- and postembedding immunohistochemistry combined with three-dimensional reconstruction of labelled profiles and quantification of immunoparticles to reveal the subcellular distribution of pre- and postsynaptic GABA(B)R1a/b and GABA(B)R2 in the rat cerebellum and ventrobasal thalamus. GABA(B)R1a/b and R2 were extensively colocalized in most brain regions including the cerebellum and thalamus. In the cerebellum, immunoreactivity for both subtypes was prevalent in the molecular layer. The most intense immunoreactivity was found in Purkinje cell spines with a high density of immunoparticles at extrasynaptic sites peaking at around 240 nm from glutamatergic synapses between spines and parallel fibre varicosities. This is in contrast to dendrites at sites around GABAergic synapses where sparse and random distribution was found for both subtypes. In addition, more than one-tenth of the synaptic membrane specialization of spine-parallel fibre synapses were labelled at pre- or postsynaptic sites. Weak immunolabelling for both subtypes was also seen in parallel fibres but only rarely in GABAergic axons. In the ventrobasal thalamus, immunolabelling for both receptor subtypes was intense over the dendritic field of thalamocortical cells. Electron microscopy demonstrated an extrasynaptic localization of GABA(B)R1a/b and R2 exclusively in postsynaptic elements. Quantitative analysis further revealed the density of GABA(B)R1a/b around GABAergic synapses was higher than glutamatergic synapses on thalamocortical cell dendrites. The distinct localization of GABA(B)Rs relative to synaptic sites in the cerebellum and ventrobasal thalamus suggests that GABA(B)Rs differentially regulate activity of different neuronal populations.

171 citations

Journal ArticleDOI
TL;DR: Findings suggest a link between the ability of neuropeptides to promote arousal and their action on VTA neurons.
Abstract: Many neuropeptides regulate feeding and arousal; the ventral tegmental area (VTA) is likely to be one site where they act. We used whole-cell patch-clamp and single-unit extracellular recordings to examine the effects of such neuropeptides on the activity of VTA neurons. Substance P (SP; 300 nM) increased the firing rate of the majority of VTA dopaminergic and gamma-aminobutyric acid (GABA)ergic neurons, and induced oscillations in two dopaminergic cells. Corticotropin-releasing factor (CRF; 200 nM) excited the majority of VTA cells directly, whereas neuropeptide Y (NPY; 300 nM) directly inhibited a subset of dopaminergic and GABAergic cells. Consecutive application of several neuropeptides revealed that all the neurons were excited by at least one of the excitatory neuropeptides SP, CRF or/and orexins. Alpha-melanocyte-stimulating hormone had no effect on dopaminergic cells (at concentrations of 500 nM and 1 microM) and affected only a small proportion of GABAergic neurons. Ghrelin (500 nM), agouti-related peptide (1 microM); cocaine and amphetamine-related transcript (500 nM) and leptin (500 nM and 1 microM) did not modulate the firing rate and membrane potential of VTA neurons. Single-cell reverse transcription polymerase chain reaction analysis showed that all NPY receptors were present in VTA neurons, and all but one cell expressed NPY and/or at least one NPY receptor. CRF was expressed in 70% of dopaminergic VTA cells; the expression of CRF receptor 2 was more abundant than that of receptor 1. These findings suggest a link between the ability of neuropeptides to promote arousal and their action on VTA neurons.

171 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297