scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that the changes in dialysate concentrations of glutamate and GABA found under specific treatments could be an expression of the activity of the neurone–astrocyte unit in specific circuits of the brain and could be used as an index of volume transmission mediated actions of these two neurotransmitters in the brain.
Abstract: Brain microdialysis has become a frequently used method to study the extracellular concentrations of neurotransmitters in specific areas of the brain. For years, and this is still the case today, dialysate concentrations and hence extracellular concentrations of neurotransmitters have been interpreted as a direct index of the neuronal release of these specific neurotransmitter systems. Although this seems to be the case for neurotransmitters such as dopamine, serotonin and acetylcholine, the extracellular concentrations of glutamate and GABA do not provide a reliable index of their synaptic exocytotic release. However, many microdialysis studies show changes in extracellular concentrations of glutamate and GABA under specific pharmacological and behavioural stimuli that could be interpreted as a consequence of the activation of specific neurochemical circuits. Despite this, we still do not know the origin and physiological significance of these changes of glutamate and GABA in the extracellular space. Here we propose that the changes in dialysate concentrations of these two neurotransmitters found under specific treatments could be an expression of the activity of the neurone-astrocyte unit in specific circuits of the brain. It is further proposed that dialysate changes of glutamate and GABA could be used as an index of volume transmission mediated actions of these two neurotransmitters in the brain. This hypothesis is based firstly on the assumption that the activity of neurones is functionally linked to the activity of astrocytes, which can release glutamate and GABA to the extracellular space; secondly, on the existence of extrasynaptic glutamate and GABA receptors with functional properties different from those of GABA receptors located at the synapse; and thirdly, on the experimental evidence reporting specific electrophysiological and neurochemical effects of glutamate and GABA when their levels are increased in the extracellular space. According to this concept, glutamate and GABA, once released into the extracellular compartment, could diffuse and have long-lasting effects modulating glutamatergic and/or GABAergic neurone-astrocytic networks and their interactions with other neurotransmitter neurone networks in the same areas of the brain.

149 citations

Journal ArticleDOI
TL;DR: Intrathecal administration of GABA, baclofen and adenosine enhanced the SCS effect on tactile allodynia even in previously non-responsive rats, and preliminary results indicate that gabapentin may have a similar effect.
Abstract: The understanding of the mode of action of spinal cord stimulation (SCS) as treatment of neuropathic pain is still fragmentary. SCS evolved from the gate-control theory postulating a spinal modulation of noxious inflow, but there is little evidence that SCS influences nociceptive pain; pain relief in peripheral vascular disease and angina pectoris is presumably secondary to other SCS effects. In man, SCS may effectively abolish both continuous and evoked pain (tactile/thermal allodynia) whereas induced, acute nociceptive pain is unaffected. Recent SCS studies performed on rat models of mononeuropathy have demonstrated a preferential effect on A beta fiber mediated functions, and the hyperexcitability of wide-dynamic-range dorsal horn neurons was attenuated. These effects were coupled to increased release of GABA and reduced glutamate and aspartate release in the dorsal horn. Intrathecal administration of GABA, baclofen and adenosine enhanced the SCS effect on tactile allodynia even in previously non-responsive rats. Preliminary results indicate that gabapentin may have a similar effect. GABAergic and adenosine-related mechanisms conceivably represent only examples of a number of putative receptor systems involved in SCS. Clinical trials have been initiated exploring the possibility to improve the efficacy of SCS by concomitant pharmacotherapy.

149 citations

Journal ArticleDOI
TL;DR: In this paper, postembedding immunocytochemistry was used to determine the cellular localization of the amino acid neurotransmitters glutamate, aspartate, gamma-aminobutyric acid (GABA), and glycine in the avian retina.
Abstract: Postembedding immunocytochemistry was used to determine the cellular localization of the amino acid neurotransmitters glutamate, aspartate, gamma-aminobutyric acid (GABA), and glycine in the avian retina. The through retinal pathway was glutamatergic, with all photoreceptors, bipolar cells, and ganglion cells being immunoreactive for glutamate. Bipolar cells displayed the highest level of glutamate immunoreactivity, with the cell bodies terminating just below the middle of the inner nuclear layer. All lateral elements, horizontal cells, amacrine cells, and interplexiform cells were immunoreactive for glycine or GABA. The GABAergic neurons consisted of two classes of horizontal cells and amacrine cells located in the lower part of the inner nuclear layer. GABA was also localized in displaced amacrine cells in the ganglion cell layer, and a population of ganglion cells that co-localize glutamate and GABA. Both the horizontal cells and GABAergic amacrine cells had high levels of glutamate immunoreactivity, which probably reflects a metabolic pool. At least two types of horizontal cells in the avian retina could be discriminated on the basis of the presence of aspartate immunoreactivity in the H2 horizontal cells. Glycine was contained in a subclass of amacrine cells, with their cell bodies located between the bipolar cells and GABAergic amacrine cells, two subclasses of bipolar cells, displaced amacrine cells in the ganglion cell layer, and ganglion cells that colocalize glutamate and glycine. Glycinergic amacrine cells had low levels of glutamate. We have also identified a new class of glycinergic interplexiform cell, with its stellate cell body located in the middle of the inner nuclear layer among the cell bodies of bipolar cells. Neurochemical signatures obtained by analyzing data from serial sections allowed the classification of subclasses of horizontal cells, bipolar cells, amacrine cells, and ganglion cells. © 1993 Wiley-Liss, Inc.

149 citations

Journal ArticleDOI
TL;DR: A large reduction in the number of symmetric synapses at epileptic foci and the increased gliosis indicate that the previously observed loss of GABAergic terminals at sites of focal epilepsy is caused by terminal degeneration.
Abstract: Previous immunocytochemical results from five monkeys with cortical focal epilepsy produced by alumina gel showed a severe decrease at seizure foci of axon terminals that contained glutamic acid decarboxylase (GAD), the synthesizing enzyme for the inhibitory neurotrasmitter, GABA. These data indicated a functional loss of GABAergic terminals but did not show: (1) whether this loss was caused by GABAergic nerve terminal degeneration or by a lack of GAD immunoreactivity within these terminals and (2) if this loss of GABAergic terminals was selective for only this terminal type. To resolve these issues, cortical tissue from three of the five monkeys used in the previous study was reexamined using electron microscopy, and a quantitative morphological analysis of cortical structures was made to compare profiles of terminals and glia in the nonepileptic cortex with those in the focus and parafocus. The following statistically significant changes were observed: (1) the number of axosomatic symmetric synapses with layer V pyramidal cells was decreased 80% at the focus and 50% at the parafocus, (2) in the neuropil adjacent to these pyramidal somata, the number of terminals forming symmetric synapses was reduced 50% at the epileptic focus but was unchanged at the parafocus, while the number of asymmetric synapses was reduced 25% at the focus and 15% at the parafocus, and (3) a 50% increase of glial profiles occurred at epileptic foci both in the neuropil and at sites apposed to pyramidal cell somata. The quantitative results also showed that terminals which form symmetric synapses had twice the number of mitochondria per terminal as those that form asymmetric synapses. Axon terminals which form symmetric synapses with somata and dendrites in the neocortex have been shown previously to contain GAD. Therefore, the large reduction in the number of symmetric synapses at epileptic foci and the increased gliosis indicate that the previously observed loss of GABAergic terminals at sites of focal epilepsy is caused by terminal degeneration. Since such terminals are reduced more severely at epileptic foci than other terminals, their loss could be the basis for seizure activity due to a preferential decrease of inhibitory function at epileptic foci. Hypoxia has been shown to cause a selective degeneration of terminals with the same morphology as GABAergic terminals in the cortex, and the basis for this loss could be related to higher physiological and/or metabolic activities of GABAergic cortical cells which may inhibit other cells tonically. The fact that increased numbers of mitochondria occur in GABAergic terminals supports this idea.

149 citations

01 Jan 2016
TL;DR: In this article, a double immunolabeling procedure was used to deter- mine the colocalization of Rein with neuropeptides and Ca2+- binding proteins.
Abstract: Reelin (Reln) is a protein with some struc- tural analogies with other extracellular matrix proteins that functions in the regulation of neuronal migration during the development of cortical laminated structures. In the cortex of adult animals, Rein is expressed primarily in y-aminobutyric acid (GABA)ergic neurons and is secreted into perineuronal nets. However, only 50-60% of GABAergic interneurons ex- press Reln. We have characterized this subpopulation of cortical GABAergic neurons that expresses Reln by using two strategies: (i) a double immunolabeling procedure to deter- mine the colocalization of Reln with neuropeptides and Ca2+- binding proteins and (ii) a combination of Golgi staining and Reln immunolabeling to determine the morphology of the rat cortical cells that store Reln. Many interneurons that express Neuropeptide Y (NPY) or somatostatin (but none of those that express parvalbumin) are Reln-immunopositive. A small pop- ulation of calbindin-positive interneurons and very few cal- retinin-positive cells express Reln immunopositivity. Golgi staining revealed that layer I horizontal cells, layer II-V bitufted neurons, and some deep cortical layer Martinotti cells express Reln. Basket and chandelier cells are often immunopositive to parvalbumin, but never to Reln. Although Reln is secreted by GABAergic neurons, its target are not the GABA receptors, but rather may be extrasynaptically located in perineuronal nets and concerned with the modulation of neuronal plasticity. Dabl, the target adapter protein that presumably mediates transcription regulation via the extra- synaptic actions of Reln, is expressed predominantly in pyra- midal neurons, but it can also be detected in a small popu- lation of GABAergic neurons that are neither horizontal nor bitufted neurons.

149 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297