scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The present data suggest a preferential action of (±)8-OH-DPAT on 5-HT1AR in GABAergic interneurons results in pyramidal disinhibition and subsequent downstream excitations of subcortical structures reciprocally connected with PFC, such as midbrain dopaminergic neurons.
Abstract: 5-HT(1A) receptors (5-HT1AR) are expressed by pyramidal and γ-aminobutyric acidergic (GABAergic) neurons in medial prefrontal cortex (mPFC). Endogenous serotonin inhibits mPFC pyramidal neurons via 5-HT1AR while 5-HT1AR agonists, given systemically, paradoxically excite ventral tegmental area-projecting pyramidal neurons. This enhances mesocortical dopamine function, a process involved in the superior efficacy of atypical antipsychotic drugs on negative and cognitive symptoms of schizophrenia. Moreover, the 5-HT1AR-induced increase of pyramidal discharge may also contribute to the maintenance of activity patterns required for working memory, impaired in schizophrenia. Given the importance of these processes, we examined the neurobiological basis of pyramidal activation through 5-HT1AR using the prototypical agent 8-OH-DPAT. (±)8-OH-DPAT (7.5 μg/kg i.v.) increased discharge rate and c-fos expression in rat mPFC pyramidal neurons. Local blockade of GABA(A) inputs with gabazine (SR-95531) avoided (±)8-OH-DPAT-induced excitations of pyramidal neurons. Moreover, (±)8-OH-DPAT administration reduced the discharge rate of mPFC fast-spiking GABAergic interneurons at doses exciting pyramidal neurons. Activation of other 5-HT1AR subpopulations (raphe nuclei or hippocampus) does not appear to contribute to pyramidal excitations. Overall, the present data suggest a preferential action of (±)8-OH-DPAT on 5-HT1AR in GABAergic interneurons. This results in pyramidal disinhibition and subsequent downstream excitations of subcortical structures reciprocally connected with PFC, such as midbrain dopaminergic neurons.

133 citations

Journal ArticleDOI
TL;DR: At least two different cannabinoid sensitive presynaptic receptors regulate network activity in the hippocampus, CB1 via the GABAergic interneurons, and a new receptor via a direct action on pyramidal cell axon terminals.

133 citations

Journal ArticleDOI
TL;DR: The results provide new data showing that activation of GABAB receptors can obscure ethanol enhancement of GABA/A/ receptor function in hippocampus and suggest that similar methods of pharmacological isolation might be applied to other brain regions showing negative or mixed ethanol-GABA interactions.
Abstract: Despite considerable evidence that ethanol can enhance chloride flux through the gamma-aminobutyric acid type A (GABA/A/) receptor-channel complex in several central neuron types, the effect of ethanol on hippocampal GABAergic systems is still controversial. Therefore, we have reevaluated this interaction in hippocampal pyramidal neurons subjected to local monosynaptic activation combined with pharmacological isolation of the various components of excitatory and inhibitory synaptic potentials, using intracellular current- and voltage-clamp recording methods in the hippocampal slice. In accord with our previous findings, we found that ethanol had little effect on compound inhibitory postsynaptic potentials/currents (IPSP/Cs) containing both GABA/A/ and GABA/B/ components. However, after selective pharmacological blockade of the GABA/B/ component of the IPSP (GABA/B/-IPSP/C) by CGP-35348, low concentrations of ethanol (22-66 mM) markedly enhanced the peak amplitude, and especially the area, of the GABA/A/ component (GABA/A/-IPSP/C) in most CA1 pyramidal neurons. Ethanol had no significant effect on the peak amplitude or area of the pharmacologically isolated GABA/B/-inhibitory postsynaptic current (IPSC). These results provide new data showing that activation of GABAB receptors can obscure ethanol enhancement of GABA/A/ receptor function in hippocampus and suggest that similar methods of pharmacological isolation might be applied to other brain regions showing negative or mixed ethanol-GABA interactions.

133 citations

Journal ArticleDOI
24 Feb 1983-Nature
TL;DR: The effect of GABA on hormone output is examined and it is found that it first stimulates and then inhibits spontaneous secretion of melanocyte-stimulating hormone (MSH) and inhibits K+-evoked secretion.
Abstract: Recent immunohistochemical evidence from the rat, indicating that γ-aminobutyric acid (GABA)-containing fibres of central nervous origin project to the pars intermedia of the pituitary1,2, prompts inquiry into the function of this innervation. There is electrophysiological evidence that GABA acts directly on melanotrophs isolated from rat, through bicuculline-blockable receptors, to increase Cl− conductance and thereby drive the membrane potential towards the Cl− equilibrium potential in these cells, resulting in depolarization at rest or reduction of the depolarization caused by excess K+ (ref. 3). As voltage-dependent Ca channels can participate in the regulation of secretion in these cells4, we have now examined the effect of GABA on hormone output and find that it first stimulates and then inhibits spontaneous secretion of melanocyte-stimulating hormone (MSH) and inhibits K+-evoked secretion. Moreover, our pharmacological evidence suggests that similar receptors are involved in the secretory and the electrophysiological responses. A function of the GABAergic innervation may therefore be to regulate hormone output by acting directly on the melanotrophs, and this regulation may be affected by the changes in electrical properties induced by GABA.

133 citations

Journal ArticleDOI
TL;DR: It is predicted that α7-nAChR loss will cause progressive impairment in hippocampal circuitry and function over time as fewer neurons are added to the dentate gyrus and those that are added integrate less well.
Abstract: Neurogenesis in the dentate gyrus occurs throughout adult mammalian life and is essential for proper hippocampal function. Early in their development, adult-born neurons express homomeric alpha7-containing nicotinic acetylcholine receptors (alpha7-nAChRs) and receive direct cholinergic innervation. We show here that functional alpha7-nAChRs are necessary for normal survival, maturation, and integration of adult-born neurons in the dentate gyrus. Stereotaxic retroviral injection into the dentate gyrus of wild-type and alpha7-knock-out (alpha7KO) male and female mice was used to label and birthdate adult-born neurons for morphological and electrophysiological measures; BrdU (5-bromo-2-deoxyuridine) injections were used to quantify cell survival. In alpha7KO mice, we find that adult-born neurons develop with truncated, less complex dendritic arbors and display GABAergic postsynaptic currents with immature kinetics. The neurons also have a prolonged period of GABAergic depolarization characteristic of an immature state. In this condition, they receive fewer spontaneous synaptic currents and are more prone to die during the critical period when adult-born neurons are normally integrated into behaviorally relevant networks. Even those adult-born neurons that survive the critical period retain long-term dendritic abnormalities in alpha7KO mice. Interestingly, local infection with retroviral constructs to knockdown alpha7-mRNA mimics the alpha7KO phenotype, demonstrating that the relevant alpha7-nAChR signaling is cell autonomous. The results indicate a profound role for alpha7-nAChRs in adult neurogenesis and predict that alpha7-nAChR loss will cause progressive impairment in hippocampal circuitry and function over time as fewer neurons are added to the dentate gyrus and those that are added integrate less well.

133 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297