scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The synaptic circuits underlying cholinergic activation of the cortex were studied by establishing the quantitative distribution of cholinergic terminals on GABAergic inhibitory interneurons and on non‐GABAergic neurons in the striate cortex of the cat.
Abstract: The synaptic circuits underlying cholinergic activation of the cortex were studied by establishing the quantitative distribution of cholinergic terminals on GABAergic inhibitory interneurons and on non-GABAergic neurons in the striate cortex of the cat. Antibodies to choline acetyltransferase and GABA were used in combined electron microscopic immunocytochemical experiments. Most of the cholinergic boutons formed synapses with dendritic shafts (87.3%), much fewer with dendritic spines (11.5%), and only occasional synapses were made on neuronal somata (1.2%). Overall, 27.5% of the postsynaptic elements, all of them dendritic shafts, were immunoreactive for GABA, thus demonstrating that they originate from inhibitory neurons. This is the highest value for the proportion of GABAergic postsynaptic targets obtained so far for any intra- or subcortical afferents in cortex. There were marked variations in the laminar distribution of targets. Spines received synapses most frequently in layer IV (23%) and least frequently in layers V–VI (3%); most of these spines also received an additional synapse from a choline acetyltransferase-negative bouton, The proportion of GABA-positive postsynaptic elements was highest in layer IV (49%, two-thirds of all postsynaptic dendritic shafts), and lowest in layers V–VI (14%). The supragranular layers showed a distribution similar to that of the average of all layers. The quantitative distribution of targets postsynaptic to choline acetyltransferase-positive terminals is very different from the postsynaptic targets of GABAergic boutons, or from the targets of all boutons in layer IV reported previously. In both cases the proportion of GABA-positive dendrites was only 8–9% of the postsynaptic elements. At least 8% of the total population of choline acetyltransferase-positive boutons, presumably originating from the basal forebrain, were also immunoreactive for GABA. This raises the possibility of cotransmission at a significant proportion of cholinergic synapses in the cortex. The present results demonstrate that cortical GABAergic neurons receive a richer cholinergic synaptic input than non-GABAergic cells. The activation of GABAergic neurons by cholinergic afferents may increase the response specificity of cortical cells during cortical arousal thought to be mediated by the basal forebrain. The laminar differences indicate that in layer IV, at the first stage of the processing of thalamic input, the cholinergic afferents exert substantial inhibitory influence in order to raise the threshold and specificity of cortical neuronal responses. Once the correct level of activity has been set at the level of layer IV, the influence can be mainly facilitatory in the other layers.

127 citations

Journal ArticleDOI
TL;DR: Testing the effect of stimulation of the mPFC and LHb on the activity of 5‐HT and non‐5‐HT, putative γ‐amino butyric acid (GABA) neurons in the DRN using extracellular recordings in anaesthetized rats indicates that a significant number of 5-HT neurons and non-5‐ HT neurons inThe DRN are influenced by both themPFC or LHb.
Abstract: Neuronal projections to the dorsal raphe nucleus (DRN) from the medial prefrontal cortex (mPFC) and lateral habenula nucleus (LHb) provide the two key routes by which information processed by mood regulatory, cortico-limbic-striatal circuits input into the 5-HT system. These two projections may converge as it appears that both activate local GABAergic neurons to inhibit 5-HT neurons in the DRN. Here we have tested this hypothesis by measuring the effect of stimulation of the mPFC and LHb on the activity of 5-HT and non-5-HT, putative gamma-amino butyric acid (GABA) neurons in the DRN using extracellular recordings in anaesthetized rats. A total of 119 5-HT neurons (regular, slow firing, broad spike width) and 21 non-5-HT, putative GABA neurons (fast-firing, narrow spike width) were tested. Electrical stimulation of the mPFC or LHb caused a poststimulus inhibition (30 ms latency) of 101/119 5-HT neurons, of which 61 (60%) were inhibited by both the mPFC and LHb. Electrical stimulation of the mPFC or LHb also caused a short latency (12-20 ms) poststimulus facilitation of 10/21 non-5-HT neurons, of which 5 (50%) were activated by both the mPFC and LHb. These data indicate that a significant number of 5-HT neurons and non-5-HT neurons in the DRN are influenced by both the mPFC and LHb. Moreover, the data are compatible with the hypothesis and that there is a convergence of mPFC and LHb inputs on local circuit GABAergic neurons in the DRN which in turn inhibit the activity of 5-HT neurons.

127 citations

Journal ArticleDOI
TL;DR: The distribution of GABA(B)R1 immunoreactivity throughout the monkey brain correlates with previous GABA( B) ligand binding studies and in situ hybridization data as well as with recent immunocytochemical studies in rodents.

127 citations

Journal ArticleDOI
TL;DR: The data presented here suggest that the level of neuronal firing regulates eCB signaling by modulating release from the postsynaptic cell, as well as interacting with presynaptic mechanisms to induce LTD at both glutamatergic and GABAergic synapses in the striatum.
Abstract: Long-term depression (LTD) at striatal synapses is mediated by postsynaptic endocannabinoid (eCB) release and presynaptic cannabinoid 1 receptor (CB1R) activation. Previous studies have indicated that eCB mobilization at excitatory synapses might be regulated by afferent activation. To further address the role of neuronal activity in synaptic plasticity we examined changes in synaptic strength induced by the L-type calcium channel activator 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL 64176, FPL) at glutamatergic and γ-aminobutyric acid (GABA)ergic synapses in the striatum. We found that the basic mechanisms for FPL-mediated eCB signaling are the same at glutamatergic and GABAergic synapses. FPL-induced LTD (FPL-LTD) was blocked in slices treated with the CB1R antagonist AM251 (2 µm), but established depression was not reversed by AM251. FPL-LTD was temperature dependent, blocked by protein translation inhibitors and prevented by intracellular loading of the anandamide transporter inhibitor VDM11 (10 µm) at both glutamatergic and GABAergic synapses. FPL-LTD at glutamatergic synapses required paired-pulse afferent stimulation, while FPL-LTD at GABAergic synapses could be induced even in the absence of explicit afferent activation. By evaluating tetrodotoxin-insensitive spontaneous inhibitory postsynaptic currents we found that neuronal firing is vital for eCB release and LTD induction at GABAergic synapses, but not for short-term depression induced by CB1R agonist. The data presented here suggest that the level of neuronal firing regulates eCB signaling by modulating release from the postsynaptic cell, as well as interacting with presynaptic mechanisms to induce LTD at both glutamatergic and GABAergic synapses in the striatum.

127 citations

Journal ArticleDOI
TL;DR: This study compares mature neurons born in the embryonic and adult hippocampus, with a focus on intrinsic membrane properties and γ‐aminobutyric acid (GABA)ergic synaptic inputs, and demonstrates that granule cells of different age, location and degree of excitability receive GABAergic inputs of equivalent functional characteristics.
Abstract: Neurogenesis in the dentate gyrus of the hippocampus follows a unique temporal pattern that begins during embryonic development, peaks during the early postnatal stages and persists through adult life. We have recently shown that dentate granule cells born in early postnatal and adult mice acquire a remarkably similar afferent connectivity and firing behavior, suggesting that they constitute a homogeneous functional population [Laplagne et al. (2006)PLoS Biol., 4, e409]. Here we extend our previous study by comparing mature neurons born in the embryonic and adult hippocampus, with a focus on intrinsic membrane properties and gamma-aminobutyric acid (GABA)ergic synaptic inputs. For this purpose, dividing neuroblasts of the ventricular wall were retrovirally labeled with green fluorescent protein at embryonic day 15 (E15), and progenitor cells of the subgranular zone were labeled with red fluorescent protein in the same mice at postnatal day 42 (P42, adulthood). Electrophysiological properties of mature neurons born at either stage were then compared in the same brain slices. Evoked and spontaneous GABAergic postsynaptic responses of perisomatic and dendritic origin displayed similar characteristics in both neuronal populations. Miniature GABAergic inputs also showed similar functional properties and pharmacological profile. A comparative analysis of the present data with our previous observations rendered no significant differences among GABAergic inputs recorded from neurons born in the embryonic, early postnatal and adult mice. Yet, embryo-born neurons showed a reduced membrane excitability, suggesting a lower engagement in network activity. Our results demonstrate that granule cells of different age, location and degree of excitability receive GABAergic inputs of equivalent functional characteristics.

127 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297