scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the synaptic availability of 5-HT is involved in the mechanism leading to stress-induced dendritic remodeling and supports the idea that the hippocampal inhibitory GABAergic tone may play a regulatory role.

342 citations

Journal ArticleDOI
Hanns Möhler1
TL;DR: Specific neuronal networks defined by respective GABAA receptor subtypes can be linked to the regulation of various clearly defined behavioural patterns, of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficits.
Abstract: Because of its control of spike-timing and oscillatory network activity, gamma-aminobutyric acid (GABA)-ergic inhibition is a key element in the central regulation of somatic and mental functions. The recognition of GABA(A) receptor diversity has provided molecular tags for the analysis of distinct neuronal networks in the control of specific pharmacological and physiological brain functions. Neurons expressing alpha(1)GABA(A) receptors have been found to mediate sedation, whereas those expressing alpha(2)GABA(A) receptors mediate anxiolysis. Furthermore, associative temporal and spatial memory can be regulated by modulating the activity of hippocampal pyramidal cells via extrasynaptic alpha(5)GABA(A) receptors. In addition, neurons expressing alpha(3)GABA(A) receptors are instrumental in the processing of sensory motor information related to a schizophrenia endophenotype. Finally, during the postnatal development of the brain, the maturation of GABAergic interneurons seems to provide the trigger for the experience-dependent plasticity of neurons in the visual cortex, with alpha(1)GABA(A) receptors setting the time of onset of a critical period of plasticity. Thus, particular neuronal networks defined by respective GABA(A) receptor subtypes can now be linked to the regulation of various clearly defined behavioural patterns. These achievements are of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficits.

341 citations

Journal ArticleDOI
TL;DR: Localization of cannabinoid CB 1 receptors on GABAergic interneurons in the rat hippocampal formation was studied by double-labeling immunohistochemistry with confocal microscopy, suggesting that cannabinoids may modulate GABAergic neurotransmission at the synapse on the soma and at synapses on the proximal dendrites of the principal neurons, as well as atsynapses on other GABAergicinterneuron.

341 citations

Journal ArticleDOI
TL;DR: It is demonstrated that 5α-R type I and 3α-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus, and data suggest that ALLO and THDOC modulate GABA action at GABAA receptors, either with an autocrine or a paracrine mechanism or by reaching GabAA receptor intracellular sites through lateral membrane diffusion.
Abstract: Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA action at GABAA receptors. ALLO and THDOC are synthesized in the brain from progesterone or deoxycorticosterone, respectively, by the sequential action of two enzymes: 5α-reductase (5α-R) type I and 3α-hydroxysteroid dehydrogenase (3α-HSD). This study evaluates 5α-R type I and 3α-HSD mRNA expression level in mouse brain by using in situ hybridization combined with glutamic acid decarboxylase 67/65, vesicular glutamate transporter 2, glial fibrillary acidic protein, and S100β immunohistochemistry. We demonstrate that 5α-R type I and 3α-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus. Neither 5α-R type I nor 3α-HSD mRNAs are expressed in S100β- or glial fibrillary acidic protein-positive glial cells. Using glutamic acid decarboxylase 67/65 antibodies to mark GABAergic neurons, we failed to detect 5α-R type I and 3α-HSD in cortical and hippocampal GABAergic interneurons. However, 5α-R type I and 3α-HSD are significantly expressed in principal GABAergic output neurons, such as striatal medium spiny, reticular thalamic nucleus, and cerebellar Purkinje neurons. A similar distribution and cellular location of neurosteroidogenic enzymes was observed in rat brain. Taken together, these data suggest that ALLO and THDOC, which can be synthesized in principal output neurons, modulate GABA action at GABAA receptors, either with an autocrine or a paracrine mechanism or by reaching GABAA receptor intracellular sites through lateral membrane diffusion.

341 citations

Journal ArticleDOI
TL;DR: It is demonstrated that CA1 interneurons, in addition to expressing functional α7 nA ChRs, also express functional α4β2-like nAChRs and that activation of both receptors facilitates an action potential-dependent release of GABA.
Abstract: Neuronal nicotinic receptors (nAChR) are known to control transmitter release in the CNS. Thus, this study was aimed at exploring the diversity and localization of nAChRs present in CA1 interneurons in rat hippocampal slices. The use of a U-tube as the agonist delivery system was critical for the reliable detection of nicotinic responses induced by brief exposure of the neurons to ACh or to the alpha7 nAChR-selective agonist choline. The present study demonstrated that CA1 interneurons, in addition to expressing functional alpha7 nAChRs, also express functional alpha4beta2-like nAChRs and that activation of both receptors facilitates an action potential-dependent release of GABA. Depending on the experimental condition, one of the following nicotinic responses was recorded from the interneurons by means of the patch-clamp technique: a nicotinic whole-cell current, depolarization accompanied by action potentials, or GABA-mediated postsynaptic currents (PSCs). Responses mediated by alpha7 nAChRs were short-lasting, whereas those mediated by alpha4beta2 nAChRs were long-lasting. Thus, phasic or tonic inhibition of CA1 interneurons may be achieved by selective activation of alpha7 or alpha4beta2 nAChRs, respectively. It can also be suggested that synaptic levels of choline generated by hydrolysis of ACh in vivo may be sufficient to control the activity of the alpha7 nAChRs. The finding that methyllycaconitine and dihydro-beta-erythroidine (antagonists of alpha7 and alpha4beta2 nAChRs, respectively) increased the frequency and amplitude of GABAergic PSCs suggests that there is an intrinsic cholinergic activity that sustains a basal level of nAChR activity in these interneurons.

338 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297