scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that differential activation of thalamic GABAA and GABAB receptors in response to varying corticothalamic input patterns may be critical in setting the oscillation frequency of thalamocortical network interactions.
Abstract: Absence seizures (3-4 Hz) and sleep spindles (6-14 Hz) occur mostly during slow-wave sleep and have been hypothesized to involve the same corticothalamic network. However, the mechanism by which this network transforms from one form of activity to the other is not well understood. Here we examine this question using ferret lateral geniculate nucleus slices and stimulation of the corticothalamic tract. A feedback circuit, meant to mimic the cortical influence in vivo, was arranged such that thalamic burst firing resulted in stimulation of the corticothalamic tract. Stimuli were either single shocks to mimic normal action potential firing by cortical neurons or high-frequency bursts (six shocks at 200 Hz) to simulate increased cortical firing, such as during seizures. With one corticothalamic stimulus per thalamic burst, 6-10 Hz oscillations resembling spindle waves were generated. However, if the stimulation was a burst, the network immediately transformed into a 3-4 Hz paroxysmal oscillation. This transition was associated with a strong increase in the burst firing of GABAergic perigeniculate neurons. In addition, thalamocortical neurons showed a transition from fast (100-150 msec) IPSPs to slow ( approximately 300 msec) IPSPs. The GABA(B) receptor antagonist CGP 35348 blocked the slow IPSPs and converted the 3-4 Hz paroxysmal oscillations back to 6-10 Hz spindle waves. Conversely, the GABA(A) receptor antagonist picrotoxin blocked spindle frequency oscillations resulting in 3-4 Hz oscillations with either single or burst stimuli. We suggest that differential activation of thalamic GABA(A) and GABA(B) receptors in response to varying corticothalamic input patterns may be critical in setting the oscillation frequency of thalamocortical network interactions.

276 citations

Journal ArticleDOI
TL;DR: The hypothesis that a GABAergic synapse inhibits cells in the PAG which modulate nociceptive transmission at the spinal level through actions on neurons in the RVM is supported.

276 citations

Journal ArticleDOI
TL;DR: Immunocytochemical studies demonstrated selective loss of NaV1.1 channels in forebrain GABAergic neurons is both necessary and sufficient to cause epilepsy and premature death in DS.
Abstract: Heterozygous loss-of-function mutations in the brain sodium channel NaV1.1 cause Dravet syndrome (DS), a pharmacoresistant infantile-onset epilepsy syndrome with comorbidities of cognitive impairment and premature death. Previous studies using a mouse model of DS revealed reduced sodium currents and impaired excitability in GABAergic interneurons in the hippocampus, leading to the hypothesis that impaired excitability of GABAergic inhibitory neurons is the cause of epilepsy and premature death in DS. However, other classes of GABAergic interneurons are less impaired, so the direct cause of hyperexcitability, epilepsy, and premature death has remained unresolved. We generated a floxed Scn1a mouse line and used the Cre-Lox method driven by an enhancer from the Dlx1,2 locus for conditional deletion of Scn1a in forebrain GABAergic neurons. Immunocytochemical studies demonstrated selective loss of NaV1.1 channels in GABAergic interneurons in cerebral cortex and hippocampus. Mice with this deletion died prematurely following generalized tonic-clonic seizures, and they were equally susceptible to thermal induction of seizures as mice with global deletion of Scn1a. Evidently, loss of NaV1.1 channels in forebrain GABAergic neurons is both necessary and sufficient to cause epilepsy and premature death in DS.

275 citations

Journal ArticleDOI
TL;DR: Quantitative transmission disequilibrium test analyses revealed that variation in GAD1 influenced multiple domains of cognition, including declarative memory, attention and working memory, and suggest that the mechanism involves altered cortical GABA inhibitory activity, perhaps modulated by dopaminergic function.
Abstract: Cortical GABAergic dysfunction has been implicated as a key component of the pathophysiology of schizophrenia and decreased expression of the gamma-aminobutyric acid (GABA) synthetic enzyme glutamic acid decarboxylase 67 (GAD(67)), encoded by GAD1, is found in schizophrenic post-mortem brain. We report evidence of distorted transmission of single-nucleotide polymorphism (SNP) alleles in two independent schizophrenia family-based samples. In both samples, allelic association was dependent on the gender of the affected offspring, and in the Clinical Brain Disorders Branch/National Institute of Mental Health (CBDB/NIMH) sample it was also dependent on catechol-O-methyltransferase (COMT) Val158Met genotype. Quantitative transmission disequilibrium test analyses revealed that variation in GAD1 influenced multiple domains of cognition, including declarative memory, attention and working memory. A 5' flanking SNP affecting cognition in the families was also associated in unrelated healthy individuals with inefficient BOLD functional magnetic resonance imaging activation of dorsal prefrontal cortex (PFC) during a working memory task, a physiologic phenotype associated with schizophrenia and altered cortical inhibition. In addition, a SNP in the 5' untranslated (and predicted promoter) region that also influenced cognition was associated with decreased expression of GAD1 mRNA in the PFC of schizophrenic brain. Finally, we observed evidence of statistical epistasis between two SNPs in COMT and SNPs in GAD1, suggesting a potential biological synergism leading to increased risk. These coincident results implicate GAD1 in the etiology of schizophrenia and suggest that the mechanism involves altered cortical GABA inhibitory activity, perhaps modulated by dopaminergic function.

275 citations

Journal ArticleDOI
29 Feb 1984-Nature
TL;DR: Electrophysiological evidence for decreased postsynaptic sensitivity to GABA following chronic benzodiazepine administration is presented as measured by the direct iontophoretic application of GABA and serotonin onto serotonergic cells in the midbrain dorsal raphe nucleus (DRN), known to receive GABAergic input.
Abstract: Benzodiazepines exert most of their pharmacological effects by a selective facilitation of the postsynaptic actions of GABA. Clinical, behavioural and electrophysiological studies have shown reduced drug response following chronic benzodiazepine administration. We present here electrophysiological evidence for decreased postsynaptic sensitivity to GABA following chronic benzodiazepine administration as measured by the direct iontophoretic application of GABA and serotonin onto serotonergic cells in the midbrain dorsal raphe nucleus (DRN), known to receive GABAergic input. The subsensitivity to GABA was found to be dose dependent and was seen when diazepam administration was three weeks or longer. Further, acute injection of the specific benzodiazepine antagonist, Ro15-1788, was found to reverse rapidly the decrease in GABA sensitivity observed in chronically diazepam-treated animals without altering GABA sensitivity in vehicle-treated rats. Decreased response to chronic benzodiazepines does not appear to be consistently related to alterations in the number or affinity of receptors for benzodiazepines. Our studies of radioligand-binding showed a decrease in the ability of GABA to enhance benzodiazepine binding in cerebral cortical membranes from chronic diazepam-treated animals without significant changes in benzodiazepine binding site density or affinity.

275 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297