scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
03 Mar 2017-Science
TL;DR: A state-dependent laminar influence of Sst interneuron–mediated inhibition is revealed, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.
Abstract: γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide–expressing (Vip) interneuron–mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron–mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.

266 citations

Journal ArticleDOI
20 Sep 1991-Science
TL;DR: Excitatory synaptic responses mediated by GABAA receptors may provide a mechanism for the recruitment of GABAergic interneurons through their recurrent connections.
Abstract: Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the cortex. Activation of postsynaptic GABAA receptors hyperpolarizes cells and inhibits neuronal activity. Synaptic responses mediated by GABAA receptors also strongly excited hippocampal neurons. This excitatory response was recorded in morphologically identified interneurons in the presence of 4-aminopyridine or after elevation of extracellular potassium concentrations. The synaptic excitation sustained by GABAA receptors synchronized the activity of inhibitory interneurons. This synchronized discharge of interneurons in turn elicited large-amplitude inhibitory postsynaptic potentials in pyramidal and granule cells. Excitatory synaptic responses mediated by GABAA receptors may thus provide a mechanism for the recruitment of GABAergic interneurons through their recurrent connections.

266 citations

Journal ArticleDOI
05 Mar 2004-Science
TL;DR: In whole-cell recordings, both CRF and ethanol enhanced γ-aminobutyric acid–mediated (GABAergic) neurotransmission in CeA neurons from wild-type and CRF2 receptor knockout mice, but not CRF1 receptors knockout mice.
Abstract: The central amygdala (CeA) plays a role in the relationship among stress, corticotropin-releasing factor (CRF), and alcohol abuse. In whole-cell recordings, both CRF and ethanol enhanced γ-aminobutyric acid–mediated (GABAergic) neurotransmission in CeA neurons from wild-type and CRF2 receptor knockout mice, but not CRF1 receptor knockout mice. CRF1 (but not CRF2) receptor antagonists blocked both CRF and ethanol effects in wild-type mice. These data indicate that CRF1 receptors mediate ethanol enhancement of GABAergic synaptic transmission in the CeA, and they suggest a cellular mechanism underlying involvement of CRF in ethanol9s behavioral and motivational effects.

266 citations

Journal ArticleDOI
TL;DR: Findings suggest that disturbed GABA neurotransmission in the PFC of schizophrenic subjects may be due to a selective alteration of GAT-1 protein in the axon terminals of chandelier neurons.

265 citations

Journal ArticleDOI
TL;DR: Findings on the localization of GAT-3 in the cerebral cortex indicate that this transporter mediates GABA uptake into glial cells, and suggest that glial GABA uptake may function to limit the spread of GABA from the synapse, as well as to regulate overall GABA levels in the neuropil.
Abstract: The termination of GABA synaptic action by high-affinity, Na(+)-dependent, neuronal, and glial plasma membrane transporters plays an important role in regulating neuronal activity in physiological and pathological conditions. We have investigated the cellular localization and distribution in the cerebral cortex of adult rats of one GABA transporter (GAT), GAT-3, by immunocytochemistry with affinity-purified polyclonal antibodies directed to its predicted C terminus that react monospecifically with a protein of approximately 70 kDa. Light microscopic studies revealed specific GAT-3 immunoreactivity (ir) in small punctate structures, and it was never observed in fibers or cell bodies. No changes in immunostaining were observed in sections incubated with GAT-3 antibodies preadsorbed with the related rat GAT-1 or mouse GAT-2/ BGT-1 C-terminal peptides, whereas in sections incubated with GAT-3 antibodies preadsorbed with rat GAT-3 C-terminal peptide, ir was not present. The highest number of GAT-3-positive puncta was in layer IV and in a narrow band corresponding to layer Vb, followed by layers II and III. Many GAT-3-positive puncta were in close association with pyramidal and nonpyramidal neuron cell bodies. Ultrastructural studies showed that GAT-3 ir was localized exclusively to astrocytic processes, which were found in the neuropil and adjacent to axon terminals having either symmetric or asymmetric specializations. In sections processed by both preembedding labeling for GAT-3 and postembedding immunogold labeling for GABA, only some of the GAT-3-positive astrocytic processes were found close to GABAergic profiles. These findings on the localization of GAT-3 in the cerebral cortex indicate that this transporter mediates GABA uptake into glial cells, and suggest that glial GABA uptake may function to limit the spread of GABA from the synapse, as well as to regulate overall GABA levels in the neuropil.

265 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297