scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings confirm that changes in endogenous dopamine concentrations resulting from drug-induced potentiation of GABAergic transmission can be measured with PET and 11C-raclopride and support its use as an approach for assessing the multiple mechanisms of drug action and their consequences in the human brain.
Abstract: Extensive neuroanatomical, neurophysiological, and behavioral evidence demonstrates that GABAergic neurons inhibit endogenous dopamine release in the mammalian corpus striatum. Positron emission tomography (PET) studies in adult female baboons, using the dopamine D2-specific radiotracer 11C-raclopride, were undertaken to assess the utility of this imaging technique for measuring these dynamic interactions in vivo. 11C-raclopride binding was imaged prior to and following the administration of either gamma-vinyl-GABA (GVG), a specific suicide inhibitor of the GABA-catabolizing enzyme GABA transaminase, or lorazepam, a clinically prescribed benzodiazepine agonist. Striatal 11C- raclopride binding increased following both GVG and lorazepam administration. This increase exceeded the test/retest variability of 11C-raclopride binding observed in the same animals. These findings confirm that changes in endogenous dopamine concentrations resulting from drug-induced potentiation of GABAergic transmission can be measured with PET and 11C-raclopride. Finally, this new strategy for noninvasively evaluating the functional integrity of neurophysiologically linked transmitter systems with PET supports its use as an approach for assessing the multiple mechanisms of drug action and their consequences in the human brain.

214 citations

Journal ArticleDOI
TL;DR: A clear correlation is established between the presence of the 5-HT3A receptor subunit in neocortical VIP/CCK GABAergic interneurons, its functional expression, and its synaptic activation by serotonergic afferent fibers from the brainstem raphe nuclei.
Abstract: Neocortical neurons expressing the serotonin 5-HT3 receptor (5-HT3R) were characterized in rat acute slices by using patch-clamp recordings combined with single-cell RT-PCR and histochemical labeling. The 5-HT3A receptor subunit was expressed selectively in a subset of GABAergic interneurons coexpressing cholecystokinin (CCK) and vasoactive intestinal peptide (VIP). The 5-HT3B subunit was never detected, indicating that 5-HT3Rs expressed by neocortical interneurons did not contain this subunit. In 5-HT3A-expressing VIP/CCK interneurons, serotonin induced fast membrane potential depolarizations by activating an inward current that was blocked by the selective 5-HT3R antagonist tropisetron. Furthermore, we observed close appositions between serotonergic fibers and the dendrites and somata of 5-HT3R-expressing neurons, suggestive of possible synaptic contacts. Indeed, in interneurons exhibiting rapid excitation by serotonin, local electrical stimulations evoked fast EPSCs of large amplitude that were blocked by tropisetron. Finally, 5-HT3R-expressing neurons were also excited by a nicotinic agonist, indicating that serotonergic and cholinergic fast synaptic transmission could converge onto VIP/CCK interneurons. Our results establish a clear correlation between the presence of the 5-HT3A receptor subunit in neocortical VIP/CCK GABAergic interneurons, its functional expression, and its synaptic activation by serotonergic afferent fibers from the brainstem raphe nuclei.

213 citations

Journal ArticleDOI
TL;DR: It is suggested that this thalamic GABAergic nucleus may be involved in the neurobiology of schizophrenia, and deficits in attention and sensory gating have been consistently found in schizophrenics, including first-break and chronic patients.
Abstract: Background: The thalamic reticular nucleus (TRN) is a shell-shaped gamma amino butyric acid (GABA)ergic nucleus, which is uniquely placed between the thalamus and the cortex, because it receives excitatory afferents from both cortical and thalamic neurons and sends inhibitory projections to all nuclei of the dorsal thalamus. Method: A review of the evidence suggesting that the TRN is implicated in the neurobiology of schizophrenia. Results: TRN-thalamus circuits are implicated in bottom-up as well as top-down processing. TRN projections to nonspecific nuclei of the dorsal thalamus mediate top-down processes, including attentional modulation, which are initiated by cortical afferents to the TRN. TRN-thalamus circuits are also involved in bottom-up activities, including sensory gating and the transfer to the cortex of sleep spindles. Intriguingly, deficits in attention and sensory gating have been consistently found in schizophrenics, including first-break and chronic patients. Furthermore, high-density electroencephalographic studies have revealed a marked reduction in sleep spindles in schizophrenics. Conclusion: On the basis of our current knowledge on the molecular and anatomo-functional properties of the TRN, we suggest that this thalamic GABAergic nucleus may be involved in the neurobiology of schizophrenia.

213 citations

Journal ArticleDOI
TL;DR: Pattern recognition of amino acid signals partitions the cells of the goldfish retina into nine statistically unique biochemical theme classes and permits a first-order chemical mapping of virtually all cellular space.
Abstract: Pattern recognition of amino acid signals partitions the cells of the goldfish retina into nine statistically unique biochemical theme classes and permits a first-order chemical mapping of virtually all cellular space. Photoreceptors, bipolar cells, and ganglion cells display a set of unique, nominally glutamatergic type E1, E1+E2, and E4 signatures, respectively. All horizontal cells are assignable to a GABAergic gamma 2 class or a non-GABAergic class with a glutamate-rich E3 signature. The amacrine cell layer is largely a mixture of (1) a taurine-dominated T1 Muller's cell signature and (2) GABAergic gamma 1, glycinergic G1, and dual glycinergic/GABAergic G gamma 1 amacrine cell signatures. Several major conclusions emerge from this work. (1) Glutamatergic, GABAergic, and glycinergic neural signatures and glial signatures account for over 99% of the cellular space in the retina. (2) All known neurons in the goldfish retina are associated with a set of conventional nonpeptide neurotransmitters. (3) Multiple forms of metabolic profiles are associated with a single nominal neurotransmitter category. (4) Glutamate and aspartate contents exhibit overlapping distributions and are not adequate univariate probes for identifying cell classes. (5) Signatures can serve as quantitative measures of cell state.

213 citations

Journal ArticleDOI
TL;DR: Electrophysiologic and pharmacologic studies suggest that the vulnerable NMDA receptors in schizophrenia may be concentrated on cortico-limbic GABAergic interneurons, thereby linking these two neuropathologic features of the disorder.

213 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297