scispace - formally typeset
Search or ask a question
Topic

GABAergic

About: GABAergic is a research topic. Over the lifetime, 9595 publications have been published within this topic receiving 473568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, four groups of pyramidal interneuron according to their expression of parvalbumin, cholecystokinin, axonal arborization density and long-range projections are described.
Abstract: The dendrites of pyramidal cells are active compartments capable of independent computations, input/output transformation and synaptic plasticity. Pyramidal cells in the CA1 area of the hippocampus receive 92% of their GABAergic input onto dendrites. How does this GABAergic input participate in dendritic computations of pyramidal cells? One key to understanding their contribution to dendritic computation lies in the timing of GABAergic input in relation to excitatory transmission, back-propagating action potentials, Ca(2+) spikes and subthreshold membrane dynamics. The issue is further complicated by the fact that dendritic GABAergic inputs originate from numerous distinct sources operating with different molecular machineries and innervating different subcellular domains of pyramidal cell dendrites. The GABAergic input from distinct sources is likely to contribute differentially to dendritic computations. In this review, I describe four groups of GABAergic interneuron according to their expression of parvalbumin, cholecystokinin, axonal arborization density and long-range projections. These four interneuron groups contain at least 12 distinct cell types, which innervate mainly or exclusively the dendrites of CA1 pyramidal cells. Furthermore, I summarize the different spike timing of distinct interneuron types during gamma, theta and ripple oscillations in vivo, and I discuss some of the open questions on how GABAergic input modulates dendritic operations in CA1 pyramidal cells.

213 citations

Journal ArticleDOI
TL;DR: The data support a model of the raphe as an area composed of functionally distinct subpopulations of 5-HT and non-5-HT neurons, in part delineated by subfield, and provide an important foundation for understanding how specific subfields modulate behavior.

213 citations

Journal ArticleDOI
TL;DR: It is found that chick lumbosacral motor axons exhibit highly regular bursts of activity from embryonic day 4 (E4) (stage 24–25), shortly after they exit the spinal cord and while still en route toward their target muscles.
Abstract: Patterned spontaneous electrical activity has been demonstrated in a number of developing neural circuits and has been proposed to play a role in refining connectivity once axons reach their targets. Using an isolated spinal cord preparation, we have found that chick lumbosacral motor axons exhibit highly regular bursts of activity from embryonic day 4 (E4) (stage 24-25), shortly after they exit the spinal cord and while still en route toward their target muscles. Similar bursts could be evoked by stimulating descending pathways at cervical or thoracic levels. Unlike older embryonic cord circuits, the major excitatory transmitter driving activity was not glutamate but acetylcholine, acting primarily though nicotinic non-alpha7 receptors. The circuit driving bursting was surprisingly robust and plastic, because bursting was only transiently blocked by cholinergic antagonists, and following recovery, was now driven by GABAergic inputs. Permanent blockade of spontaneous activity was only achieved by a combination of cholinergic antagonists and bicuculline, a GABAA antagonist. The early occurrence of patterned motor activity suggests that it could be playing a role in either peripheral pathfinding or spinal cord circuit formation and maturation. Finally, the characteristic differences in burst parameters already evident between different motoneuron pools at E4 would require that the combination of transcription factors responsible for specifying pool identity to have acted even earlier.

213 citations

Journal ArticleDOI
TL;DR: It is indicated that neuronal subpopulations in each of the amygdaloid nuclei of the monkey are GABAergic, and certain aspects of the functional organization of this rich GABAergic circuitry can be elucidated by correlating the findings of the present investigation with previous anatomical, physiological, and pharmacological studies of the amygdala.

212 citations

Journal ArticleDOI
27 Mar 2008-Neuron
TL;DR: Paired recordings in vitro showed that Ivy cells receive depressing EPSPs from pyramidal cells, which in turn receive slowly rising and decaying inhibitory input from Ivy cells, a type of slow-spiking interneuron that offers distinct contributions to network activity.

212 citations


Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Synaptic plasticity
19.3K papers, 1.3M citations
95% related
Glutamate receptor
33.5K papers, 1.8M citations
95% related
Dopaminergic
29K papers, 1.4M citations
94% related
Hippocampus
34.9K papers, 1.9M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022749
2021341
2020320
2019301
2018297